17,347 research outputs found

    Key Factors for Improving Rigor and Reproducibility: Guidelines, Peer Reviews, and Journal Technical Reviews

    Get PDF
    To respond to the NIH\u27s policy for rigor and reproducibility in preclinical research, many journals have implemented guidelines and checklists to guide authors in improving the rigor and reproducibility of their research. Transparency in developing detailed prospective experimental designs and providing raw data are essential premises of rigor and reproducibility. Standard peer reviews and journal-specific technical and statistical reviews are critical factors for enhancing rigor and reproducibility. This brief review also shares some experience from Arteriosclerosis, Thrombosis, and Vascular Biology, an American Heart Association journal, that has implemented several mechanisms to enhance rigor and reproducibility for preclinical research

    Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches

    Get PDF
    Aortic aneurysms and dissections are life-threatening conditions that have a high risk for lethal bleeding and organ malperfusion. Many studies have investigated the molecular basis of these diseases using mouse models. In mice, ex vivo, in situ, and ultrasound imaging are major approaches to evaluate aortic diameters, a common parameter to determine the severity of aortic aneurysms. However, accurate evaluations of aortic dimensions by these imaging approaches could be challenging due to pathological features of aortic aneurysms. Currently, there is no standardized mode to assess aortic dissections in mice. It is important to understand the characteristics of each approach for reliable evaluation of aortic dilatations. In this review, we summarize imaging techniques used for aortic visualization in recent mouse studies and discuss their pros and cons. We also provide suggestions to facilitate the visualization of mouse aortas

    Self-trapping of a Fermi super-fluid in a double-well potential in the BEC-unitarity crossover

    Full text link
    We derive a generalized Gross-Pitaevskii density-functional equation appropriate to study the Bose-Einstein condensate (BEC) of dimers formed of singlet spin-half Fermi pairs in the BEC-unitarity crossover while the dimer-dimer scattering length aa changes from 0 to ∞\infty. Using an effective one-dimensional form of this equation, we study the phenomenon of dynamical self-trapping of a cigar-shaped Fermi super-fluid in the entire BEC-unitarity crossover in a double-well potential. A simple two-mode model is constructed to provide analytical insights. We also discuss the consequence of our study on the self-trapping of an atomic BEC in a double-well potential.Comment: 10 pages, 9 figure

    Efficient kk-separability criteria for mixed multipartite quantum states

    Full text link
    We investigate classification and detection of entanglement of multipartite quantum states in a very general setting, and obtain efficient kk-separability criteria for mixed multipartite states in arbitrary dimensional quantum systems. These criteria can be used to distinguish n−1n-1 different classes of multipartite inseparable states and can detect many important multipartite entangled states such as GHZ states, W states, anti W states, and mixtures thereof. They detect kk-nonseparable nn-partite quantum states which have previously not been identified. Here k=2,3,⋯ ,nk=2,3,\cdots,n. No optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. Most importantly, they can be implemented in today's experiments by using at most O(n2)\mathcal{O}(n^2) local measurements.Comment: 6 pages, 4 figure

    Advanced gynecologic malignancies treated with a combination of the VEGF inhibitor bevacizumab and the mTOR inhibitor temsirolimus.

    Get PDF
    BackgroundBevacizumab and temsirolimus are active agents in gynecologic tumors. Temsirolimus attenuates upregulation of HIF-1α levels, a resistance mechanism for antiangiogenics, and targets the PI3-kinase/AKT/mTOR axis, commonly aberrant in these tumors.Patients and methodsWe analyzed safety and responses in 41 patients with gynecologic cancers treated as part of a Phase I study of bevacizumab and temsirolimus.ResultsMedian age of the 41 women was 60 years (range, 33-80 years); median number of prior systemic therapies was 4 (1-11). Grade 3 or 4 treatment-related toxicities included: thrombocytopenia (10%), mucositis (2%), hypertension (2%), hypercholesterolemia (2%), fatigue (7%), elevated aspartate aminotransferase (2%), and neutropenia (2%). Twenty-nine patients (71%) experienced no treatment-related toxicity greater than grade 2. Full FDA-approved doses of both drugs (bevacizumab 15mg/kg IV Q3weeks and temsirolimus 25mg IV weekly) were administered without dose-limiting toxicity. Eight patients (20%) achieved stable disease (SD) > 6 months and 7 patients (17%), a partial response (PR) [total = 15/41 patients (37%)]. Eight of 13 patients (62%) with high-grade serous histology (ovarian or primary peritoneal) achieved SD > 6 months/PR.ConclusionBevacizumab and temsirolimus was well tolerated. Thirty-seven percent of heavily-pretreated patients achieved SD > 6 months/PR, suggesting that this combination warrants further study

    Magnetic moment of hyperons in nuclear matter by using quark-meson coupling models

    Full text link
    We calculate the magnetic moments of hyperons in dense nuclear matter by using relativistic quark models. Hyperons are treated as MIT bags, and the interactions are considered to be mediated by the exchange of scalar and vector mesons which are approximated as mean fields. Model dependence is investigated by using the quark-meson coupling model and the modified quark-meson coupling model; in the former the bag constant is independent of density and in the latter it depends on density. Both models give us the magnitudes of the magnetic moments increasing with density for most octet baryons. But there is a considerable model dependence in the values of the magnetic moments in dense medium. The magnetic moments at the nuclear saturation density calculated by the quark meson coupling model are only a few percents larger than those in free space, but the magnetic moments from the modified quark meson coupling model increase more than 10% for most hyperons. The correlations between the bag radius of hyperons and the magnetic moments of hyperons in dense matter are discussed.Comment: substantial changes in the text, submitted to PL
    • …
    corecore