46,322 research outputs found

    Spontaneous phase oscillation induced by inertia and time delay

    Full text link
    We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is examined; revealed in numerical simulations is emergence of spontaneous phase oscillation without external driving, which turns out to be in good agreement with analytical results derived in the strong-coupling limit. Such self-oscillation is found to suppress synchronization and its frequency is observed to decrease with inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appropriate regions of the parameters.Comment: 5 pages, 6 figures, to pe published in PR

    Nonlinear dynamic analysis of shells of revolution by matrix displacement method

    Get PDF
    Nonlinear dynamic analysis of shells of revolution by matrix displacement metho

    Holographic Construction of Technicolor Theory

    Full text link
    We construct a dual description of technicolor theory based on the D4/D8 brane configuration. A strongly-coupled technicolor theory is identified as the effective theory on D-branes, and from the gauge/gravity correspondence, we explore the weakly-coupled holographic description of dynamical electroweak symmetry breaking. It is found from the D-brane probe action that the masses of W and Z bosons are given by the decay constant of technipion, and the technimesons become hierarchically heavy. Moreover, the couplings of heavier modes to standard model fermions are rather suppressed. The oblique correction parameters are also evaluated and found to be small except for the S parameter, which can be reduced by modifying the model. The fermion fields are introduced at the intersections of D-branes and their masses are generated via massive gauge bosons from open strings stretching between D-branes.Comment: 23 pages; references added, minor change

    High Temperature Superfluid and Feshbach Resonance

    Full text link
    We study an effective field theory describing cold fermionic atoms near a Feshbach resonance. The theory gives a unique description of the dynamics in the limit that the energy of the Feshbach resonance is tuned to be twice that of the Fermi surface. We show that in this limit the zero temperature superfluid condensate is of order the Fermi energy, and obtain a critical temperature TC≃0.43TFT_C \simeq 0.43 T_FComment: 9 pages, 3 figures, RevTe

    Strong correlation effects in the doped Hubbard model in infinite dimensions

    Full text link
    The density of states and the optical conductivity of the doped Hubbard model on a Bethe lattice with infinite connectivities have been studied using an analytic variant of the Lanczos continued fraction method. The spectral weight of the gap states and the position of the chemical potential upon hole or electron doping have been studied. We argue that the strong correlation effects such as gap states and midinfrared band shown in two dimensions also appear in infinite dimensions.Comment: 9 pages, revtex, 3 figures upon reques

    Flavor symmetry breaking effects on SU(3) Skyrmion

    Get PDF
    We study the massive SU(3) Skyrmion model to investigate the flavor symmetry breaking (FSB) effects on the static properties of the strange baryons in the framework of the rigid rotator quantization scheme combined with the improved Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB kinetic terms are shown to improve cc the ratio of the strange-light to light-light interaction strengths and cˉ\bar{c} that of the strange-strange to light-light.Comment: 12 pages, latex, no figure

    Geometric and combinatorial realizations of crystal graphs

    Full text link
    For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For affine type A, we extend the Young wall construction to arbitrary level, describing a combinatorial realization of the crystals in terms of new objects which we call Young pyramids.Comment: 34 pages, 17 figures; v2: minor typos corrected; v3: corrections to section 8; v4: minor typos correcte

    Condensation of Hard Spheres Under Gravity: Exact Results in One Dimension

    Full text link
    We present exact results for the density profile of the one dimensional array of N hard spheres of diameter D and mass m under gravity g. For a strictly one dimensional system, the liquid-solid transition occurs at zero temperature, because the close-pakced density, ϕc\phi_c, is one. However, if we relax this condition slightly such that phic=1−δphi_c=1-\delta, we find a series of critical temperatures T_c^i=mgD(N+1-i)/\mu_o with \mu_o=const, at which the i-th particle undergoes the liquid-solid transition. The functional form of the onset temperature, T_c^1=mgDN/\mu_o, is consistent with the previous result [Physica A 271, 192 (1999)] obtained by the Enskog equation. We also show that the increase in the center of mass is linear in T before the transition, but it becomes quadratic in T after the transition because of the formation of solid near the bottom
    • …
    corecore