134 research outputs found

    Nanoscale Mechanical Switching of Ferroelectric Polarization Via Flexoelectricity

    Get PDF
    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force

    Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles

    Full text link
    The technology of dynamic map fusion among networked vehicles has been developed to enlarge sensing ranges and improve sensing accuracies for individual vehicles. This paper proposes a federated learning (FL) based dynamic map fusion framework to achieve high map quality despite unknown numbers of objects in fields of view (FoVs), various sensing and model uncertainties, and missing data labels for online learning. The novelty of this work is threefold: (1) developing a three-stage fusion scheme to predict the number of objects effectively and to fuse multiple local maps with fidelity scores; (2) developing an FL algorithm which fine-tunes feature models (i.e., representation learning networks for feature extraction) distributively by aggregating model parameters; (3) developing a knowledge distillation method to generate FL training labels when data labels are unavailable. The proposed framework is implemented in the Car Learning to Act (CARLA) simulation platform. Extensive experimental results are provided to verify the superior performance and robustness of the developed map fusion and FL schemes.Comment: 12 pages, 5 figures, to appear in 2021 IEEE International Conference on Robotics and Automation (ICRA

    Dynamic motion of polar skyrmions in oxide heterostructures

    Full text link
    Polar skyrmions have been widely investigated in oxide heterostructure recently, due to their exotic properties and intriguing physical insights. Meanwhile, so far, the external field-driven motion of the polar skyrmion, akin to the magnetic counterpart, has yet to be discovered. Here, using phase-field simulations, we demonstrate the dynamic motion of the polar skyrmions with integrated external thermal, electrical, and mechanical stimuli. The external heating reduces the spontaneous polarization hence the skyrmion motion barrier, while the skyrmions shrink under the electric field, which could weaken the lattice pinning and interactions between the skyrmions. The mechanical force transforms the skyrmions into c-domain in the vicinity of the indenter center under the electric field, providing the space and driving force needed for the skyrmions to move. This study confirmed that the skyrmions are quasi-particles that can move collectively, while also providing concrete guidance for the further design of polar skyrmion-based electronic devices.Comment: 17 pages, 4 figure

    A Hierarchical Compositional Model for Face Representation and Sketching

    Full text link

    Parity Splitting and Polarized-Illumination Selection of Plasmonic Higher-Order Topological States

    Full text link
    Topological states, originated from interactions between internal degree of freedoms (like spin and orbital) in each site and crystalline symmetries, offer a new paradigm to manipulate electrons and classical waves. The accessibility of spin degree of freedom has motivated much attention on spin-related topological physics. However, intriguing topological physics related to atomic-orbital parity, another binary degree of freedom, have not been exploited since accessing approaches on atomic orbitals are not well developed. Here, we theoretically discover spectral splitting of atomic-orbital-parity-dependent second-order topological states on a designer-plasmonic Kagome metasurface, and experimentally demonstrate it by exploiting the easy controllability of metaatoms. Unlike previous demonstrations on Hermitian higher-order topological insulators, radiative non-Hermicity of the metasurface enables far-field access into metaatomic-orbital-parity-dependent topological states with polarized illuminations. The atomic-orbital parity degree of freedom may generate more intriguing topological physics by interacting with different crystalline symmetries, and promise applications in polarization-multiplexing topological lasing and quantum emitters.Comment: 19 pages, 4 figure
    corecore