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Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient

and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crys-

tals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become

significant and can potentially be utilized for device applications. Using the phase-field method, we

study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradi-

ent created via an atomic force microscope tip. Our simulation results show good agreement with

existing experimental observations. We examine the competition between the piezoelectric and

flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization

switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field

at the film bottom can be used as a criterion to determine whether domain switching may happen

under a mechanical force. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905837]

The emergence of nanotechnology has revolutionarily

changed the discipline of material science and engineering.

It either utilizes the quantum effect or takes advantage of

the great surface-to-volume ratio to tune the properties of

materials at the nanoscale. The quantum effect enables the

material characteristic size-dependent phenomenon includ-

ing quantum confinement, tunneling, quantum transport, etc.

The surface-to-volume ratio, which is inversely proportional

to the length scale, is the key for highly efficient catalysis

and ultrastrong alloys with high ductility.1 The gradient

effect, which is also inversely proportional to the length

scale, may become significant at nanometer scale and thus

dramatically change material properties and performance.

However, it has not drawn much attention in contrast to the

other two aspects of nanomaterials.

Flexoelectricity, as one of such effects depending on the

gradient, measures the coupling between the gradient of me-

chanical strain and the electric polarization. Therefore, to-

gether with the well-known piezoelectricity, the dependence

of induced electric polarization on mechanical deformation

can be phenomenologically written as

Pi ¼ eijkejk þ lijkl

@ekl

@xj
; (1)

where eij is the strain component, eijk is the third-rank

piezoelectric tensor, and lijkl is the fourth-rank flexoelec-

tric (polarization) tensor. The first term on the right-hand

side of Eq. (1) describes the piezoelectric effect, i.e., the

linear response of polarization to a homogeneous applied

strain. The second term is the flexoelectric contribution

to polarization from an inhomogeneous strain, i.e., strain

gradient. While piezoelectricity only exists in crystals

without inversion symmetry, flexoelectricity exists in all

crystals.

The piezoelectricity is a very well studied effect, and

it has already been utilized in many device applications

including actuators, sensors, and microelectromechanical sys-

tems (MEMSs).2,3 In contrast, the flexoelectricity is much less

understood. As a matter of fact, it is usually neglected in mac-

roscale systems since the magnitude of flexoelectric coeffi-

cient lijkl is typically on the order of nC/m.4 However, at the

nanoscale, the strain gradient can approach �106–107 m�1,

and as a result the flexoelectric effect becomes significant or

even dominant over the piezoelectric effect.

There are ample evidences demonstrating the existence

of flexoelectric effect. For example, the domain walls, across

which the strain varies over a nanometer thickness, are natu-

ral candidates for significant flexoelectricity effects. It was

recently shown theoretically that both twin walls and anti-

phase boundaries in the incipient ferroelectric SrTiO3 (STO)

have non-zero polarization due to the flexoelectric effect.5,6

The long-believed Ising-like 180� domain walls in tetragonal

ferroelectrics were of mixed N�eel and Bloch character due to

flexoelectricity.7–9

The flexoelectric effect can also be utilized to switch

ferroelectric domains through a mechanical force rather

than an electric field. Recently, Lu et al. demonstrated the

strain gradient generated by an atomic force microscopy

(AFM) tip can mechanically switch the polarization within

a nanoscale volume of a ferroelectric film.10 However,

there are fundamental questions with regard to this experi-

mental demonstration. For example, since the stress

induced by AFM is huge, the piezoelectric effect is not

negligible. An interesting question arises as to what are the

relative contributions from piezoelectricity and flexoelec-

tricity in the switching process. If the switching is domi-

nated by flexoelectric effect, what is the critical limit for

the thickness of the film and the magnitude of load? In this

paper, we use the phase-field method to investigate and

understand the mechanical writing process.

We first extended the phase-field model of ferroelectric

domains11,12 to include the flexoelectric contributions. The

free energy density of a ferroelectric crystal is given by13

0003-6951/2015/106(2)/022904/5/$30.00 VC 2015 AIP Publishing LLC106, 022904-1

APPLIED PHYSICS LETTERS 106, 022904 (2015)

http://dx.doi.org/10.1063/1.4905837
http://dx.doi.org/10.1063/1.4905837
http://dx.doi.org/10.1063/1.4905837
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4905837&domain=pdf&date_stamp=2015-01-13


F ¼ aijPiPj þ aijklPiPjPkPl þ aijklmnPiPjPkPl Pm Pn

þ aijklmnorPiPjPkPl Pm PnPoPr þ
1

2
gijkl

@Pi

@xj

@Pk

@xl

þ 1

2
cijkleijekl � qijkleijPkPl þ

fijkl

2

@Pk

@xl
eij �

@eij

@xl
Pk

� �

� Pi Ei þ
Ed

i

2

� �
; (2)

where xi is the ith component of the Cartesian coordinate

system, Pi is the polarization component, eij is the stress

component, Ei is the applied electric field, Ei
d is the depolari-

zation field, a0s are the dielectric stiffness tensor (only aij is

assumed to be temperature dependent), gijkl is the gradient

energy coefficient, cijkl is the elastic stiffness tensor, qijkl is

the electrostrictive tensor, and fijkl is the flexoelectric (polar-

ization) tensor.14 By minimizing the total free energy Eq. (2)

with respect to polarization, we get

Pj ¼
1

2aij � qijklekl
fijkl

@ekl

@xj
þ Ei þ Ed

i

� �

¼ e0vij Ef
i þ Ei þ Ed

i

� �
; (3)

where e0 is the permittivity of vacuum, vij is the dielectric

constant, and Ef
i ¼ fijklð@ekl=@xjÞ is the flexoelectric field.14

(Higher order terms of P polynomials are ignored for sim-

plicity.) Thus, the flexoelectric effect can be regarded as an

analogue to the electric field, which can modify the free

energy profile asymmetrically in contrast to homogeneous

stress.10 Its magnitude and direction are dependent on the

flexoelectric tensor and the strain gradient component.

The temporal evolution of the three-dimensional polar-

ization field (Pi, i¼ 1, 2, and 3) is described by time-

dependent Ginzburg-Landau (TDGL) equation

@Pi r;tð Þ
@t

¼ �L
dF

dPi r;tð Þ
i ¼ 1; 2; 3ð Þ; (4)

where L is a kinetic coefficient related to the domain wall

mobility and r is the position. The stress distribution under

the AFM tip is approximated by a spherical indenter, i.e.,

r33 ¼ �
3p

2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2

r
; (5)

where r is the distance from the tip-surface junction, p is the

load, and a is the radius of contact area (as shown in Fig.

1(a)). The latter is proportional related to p1/3.15

In order to compare with the previous experimental

results,10 compressively strained ultrathin BaTiO3 (BTO)

thin films are studied. The simulation setups are chosen to be

similar to the experimental conditions.10 The BTO film

thickness was assumed to be 5 nm (12 unit cells). The STO

substrate was assumed to exert a biaxial 2.5% compressive

strain on BTO layer. The coefficients of BTO for Eq. (2) are

from Refs. 16, 17 to 18. The flexoelectric coefficients are

scaled with a factor of 0.6, considering the dielectric constant

difference between Ba0.5Sr0.5TiO3 and BTO.18 Under this

condition, the equilibrium structure of the BTO film (with no

load) is tetragonal with a uniaxial spontaneous polarization

of 0.34 C/m2. The radius of the contact area can be estimated

from the observed domain width to be about 10 nm with a

1000 nN load.10

TDGL Eq. (4) were solved using the semi-implicit

Fourier spectral method12 on a 1024Dx� 1Dx� 512Dx mesh

with periodic boundary conditions along the x1and x2 axes,

where Dx¼ 69.06 pm is the simulation grid spacing. To solve

Eqs. (2) and (4) accurately, a finite difference method was

used to calculate the out-of-plane derivatives of the polariza-

tion and strain in Eq. (2) and the results used to correct the

spectral method in an approach broadly similar to that pro-

posed by Wang€uemert-P�erez et al.19 This approach greatly

reduces the large oscillations in the derivative functions near

the thin film boundaries associated with the Gibbs phenom-

enon that arise due to the discontinuous changes in these

functions at the film edges. The thicknesses of the ferroelec-

tric thin film and STO substrate were taken to be 72Dx and

284Dx, respectively. For the electrostatic energy calcula-

tions, we used background dielectric constants of 45.20 To

simulate the thin film with mechanical load, mixed boundary

conditions were used, in which the displacement at the bot-

tom of the substrate was assumed to be zero and the top sur-

face of the film was assumed to be traction free in the

absence of the indenter. Under the AFM indenter, the r33

stress was assumed to be non-zero. Boundary conditions in

the out-of-plane direction were applied using a superposition

solution method.21

The simulation started from small random noises with

P3> 0. Without load, the equilibrium structure was a single

c domain with out-of-plane polarization component

P3¼ 0.34 C/m2, which is identical to the previous thermody-

namic calculation. Then with an AFM load of 1000 nN, the

system with the same initial condition was relaxed to equilib-

rium. The calculated surface displacement and stress distri-

bution are shown in Figures 1(b)–1(e). The radius of the

contact area is 10 nm and the maximum displacement of the

top surface is around 0.47 nm. As shown in Figures

1(c)–1(e), huge compressive stresses (both in-plane and out-

of-plane) are induced by the AFM. Within the contact

region, the stress variations under AFM tip are over several

GPa, which is well above the coercive stresses. In addition,

the flexoelectric field induced by the AFM tip reaches as

FIG. 1. Mechanical writing on thin film via AFM tip (spherical indenter).

(a) The schematic setup of the system. R is the radius of the AFM tip sphere

(dashed circle). a is the radius of the contact area. (b) Surface displacement

of the cross-section. (c)–(e) Distribution of stress components r1, r3, and r5.
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high as 107 V/m, which is well above the coercive field of

BTO (�106 V/m) as well.

Because the coercive fields and stresses from the

Landau-Ginzburg-Devonshire theory are typically much

larger than the experimental measurements (for example, the

coercive field is usually more than ten times larger than the

experimental observed values partially due to the existence

of defects), the real switching barrier should be much lower

than the calculated values from the phase-field simulation.

Therefore, the simulation starts from noises with positive

out-of-plane polarization component P3 to reduce the switch-

ing barrier; the final relaxed states thus represent the

switched equilibrium domain structures. It should be noted

that the calculated flexoelectric field is based on constant

flexoelectric coupling coefficients, i.e., the stress-induced

variation of dielectric permittivity is not considered here.

The calculated polarization distribution is shown in

Figure 2. It is found that the volume under AFM tip has been

switched with the out-of-plane polarization component

pointing down. There exists in-plane polarization compo-

nents as well, induced by the deformation. The magnitudes

for the in-plane components are, however, an order of mag-

nitude smaller than the out-of-plane component. That is,

because the substrate constraint is so large that the formation

of in-plane domains is inhabited. An interesting phenomenon

is the appearance of wedged domain walls. As shown in

Figures 2(a) and 2(b), the domain walls are not parallel to x3,

there must be bound charge near the domain walls (Figure

2(c)). The calculated bound charge density reaches as

high as 107 C/m3. The induced bound charge may interact

with the carriers and modify their mobility and thus the local

electric conductivity. This might be one of the reasons that

the resistivity change of direct electric switching of polariza-

tion is smaller than that from mechanical switching via

flexoelectricity.22

One advantage of the phase-field method is the fact that

one can easily separate the contributions of different driving

forces to polarization switching and understand their relative

roles in the switching mechanism. By setting the flexoelec-

tric coefficients to zero, we turned off the flexoelectric effect.

Thus, the polarization change is entirely due to the piezo-

electric effect. The polarization distribution with only

including piezoelectric contributions is shown in Figures

2(d) and 2(e). As compared to Figures 2(a) and 2(b), the dis-

tribution of polarization components is quite different. The

major difference is no switched c domain. The out-of-plane

polarization component P3 under tip is compressed but not

switched. This can be explained by how these two types of

deformation-polarization coupling modify the free energy

profile. As illustrated in Figure 3(a), the flexoelectric effect

is similar to that by an electric field which changes the free

energy profile asymmetrically. If the flexoelectric field is

large enough to overcome the energy barrier, the polarization

flips. In contrast, the piezoelectric effect modifies the free

energy symmetrically (Figure 3(b)). The equilibrium polar-

ization may be extended or compressed but not 180�

switched. Thus, we conclude that the polarization flipping by
mechanical deformation is due to the flexoelectric effect. The

piezoelectric effect is comparably weak but should not be

neglected. By comparing Figures 2(b) and 2(e), the in-plane

components show some similarities. They have similar mag-

nitude and both exhibit the highest value at the film-substrate

interface.

The film thickness and load are two other factors that

may affect the flexoelectric effect. Apparently, a small load

cannot provide sufficiently high flexoelectric fields to switch

the ferroelectric domains. On the other hand, thick films can-

not exhibit strong flexoelectric effects as well, even though

the strain gradient just under the AFM tip may still be very

large. To study the dependence of domain switching on film

thickness, we performed a series of phase-field simulations

by varying both film thickness and the applied load. The

simulation results are plotted in Figure 4(a). The switched

domain width remains almost constant and suddenly

drops when the film reaches the critical thickness for each

fixed load. Figures 4(b)–4(e) show the polarization, stress

FIG. 2. The polarization distribution under mechanical load 1000 nN. (a)

and (b) The polarization component P1 and P3 with flexoelectric effect, (c)

the bound change induced by the wedged domain walls, (d) and (e) the

polarization component P1 and P3 without flexoelectric effect.

FIG. 3. The energy profile change as

the effect of different polarization and

deformation coupling: (a) flexoelec-

tricity and (b) piezoelectricity. The

solid arrows indicate the polarization

magnitude and direction.
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components, and the flexoelectric field distribution of a film

with 25 nm thick under a 1000 nN load. The switched do-

main is about 6 nm wide, which is well within the contact

area of 10 nm width. As shown in Figure 4(e), the flexoelec-

tric effect far from the tip-surface junction becomes too

weak to switch the local polarization. Only near the center,

the flexoelectric field is strong enough to switch the polariza-

tion. When the film is too thick to produce a strong flexoelec-

tric field to switch the polarization in the region at the

bottom of the film, the domain switching cannot happen at

all since the huge electrostatic energy penalty inhibits the

formation of partial domains. In other words, the flexoelec-

tric effect induced switching must penetrate the whole film

thickness. Therefore, in order to have flexoelectric-effect-

induced domain switching, the critical film needs to be so

thin that the flexoelectric field at the film-substrate interface

is still larger than the coercive field. This can well explain

why the flexoelectric effect induced switching is not

observed in thick films or bulk materials.

It should be pointed out that there are still no reliable

values for the flexoelectric coefficients for BTO. For exam-

ple, the flexoelectric coefficients of BTO obtained from ex-

perimental measurements23 and theoretical calculations18,24

are several orders of magnitude different. The experimen-

tally measured flexoelectric coefficients may be affected by

different boundary conditions,25 surface piezoelectricity, and

surface flexoelectricity.24 Therefore, in this work, we adopt

the values from first-principles calculations.18

In addition to the uncertainty in the flexoelectric coeffi-

cients, the shape of the AFM tip is another factor that may

affect our simulation results. In the following, we also simu-

lated a flat punch-like AFM tip to compare with spherical in-

denter geometry. To be specific, we calculated the three-

dimensional flexoelectric field distribution from two quite

FIG. 4. The thickness dependence of

mechanical switching via flexoelectric

effect. (a) Switched domain width on

the top surface of the film as a function

of film thickness and applied load. The

profiles of out-of-plane polarization

component P3 (b), stress components

r1 (c) and r3 (d), and out-of-plane

flexoelectric field (e) at 1000 nN of a

film of 25 nm thick. The white dashed

lines indicate the switched domain.

FIG. 5. The flexoelectric field distribu-

tions for different AFM tip geometries

(unit: V/m): spherical indenter (a)

schematic, (c) in-plane flexoelectric

field Ef
1, (e) out-of-plane flexoelectric

field Ef
3; cylindrical flat punch (b)

schematic (d) in-plane flexoelectric

field Ef
1, (f) out-of-plane flexoelectric

field Ef
3.

022904-4 Gu et al. Appl. Phys. Lett. 106, 022904 (2015)



different tip geometries. For the flat punch-like tip geometry,

a 12th-order polynomial is used to represent a nearly flat bot-

tom. The displacement on the top surface induced by the

additional stress is written as26

d rð Þ ¼ br12

12
; r � a; (6)

where b is a fitting constant. We adopted a mesh size of

200� 200� 30, simulating a real size of 80 nm� 80 nm

� 12 nm, in which the film thickness and the substrate thick-

ness were all set as 4.8 nm. For the two tips, loads were cho-

sen to be 1000 nN in each case. Figure 5 shows the quarter

plot of the flexoelectric field distributions from the calcula-

tion zoomed near the tip center with a size of 20 nm

� 20 nm� 4.5 nm. Both tip geometries show similar strong

flexoelectric fields in both x1 and x3 directions, which are

well above the coercive fields of BTO thin film. The fields

change dramatically at the contact edges due to the sharp

variation of the stresses. Both tip geometries show that the

out-of-plan flexoelectric field Ef
3 at the bottom are still large

enough to overcome the switching barrier. Therefore, we

conclude that the AFM tip geometry is not important com-

paring to film thickness and the stress in the mechanical

switching process.

In this letter, we present a phase-field model of ferro-

electric domains with flexoelectric contribution. We repro-

duced the mechanical switching process under an AFM

approximated as a spherical tip indenter. The flexoelectric

effect is shown to be strongly localized. The flexoelectric

field reaches as high as �107 V/m beneath the AFM tip and

decays quickly away from the tip. This type of mechanical

switching is only possible in nanoscale films with the upper

bound for the film thickness on the order of a few nano-

meters. The mechanical switching via flexoelectric effect is

more similar to electric field induced switching rather than

the conventional mechanical switching via piezoelectricity.

The switched ferroelectric domains are thermodynamically

stable even after unloading. Hence, this switching process

has potential applications in high-density data storage via

mechanical means, which can avoid leakage or dielectric

breakdown as in direct electric switching.
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