2,464 research outputs found

    Vascular smooth muscle TRPC3 channels facilitate the inverse hemodynamic response during status epilepticus

    Get PDF
    Human status epilepticus (SE) is associated with a pathological reduction in cerebral blood flow termed the inverse hemodynamic response (IHR). Canonical transient receptor potential 3 (TRPC3) channels are integral to the propagation of seizures in SE, and vascular smooth muscle cell (VSMC) TRPC3 channels participate in vasoconstriction. Therefore, we hypothesize that cerebrovascular TRPC3 channels may contribute to seizure-induced IHR. To examine this possibility, we developed a smooth muscle-specific TRPC3 knockout (TRPC3smcKO) mouse. To quantify changes in neurovascular coupling, we combined laser speckle contrast imaging with simultaneous electroencephalogram recordings. Control mice exhibited multiple IHRs, and a limited increase in cerebral blood flow during SE with a high degree of moment-to-moment variability in which blood flow was not correlated with neuronal activity. In contrast, TRPC3smcKO mice showed a greater increase in blood flow that was less variable and was positively correlated with neuronal activity. Genetic ablation of smooth muscle TRPC3 channels shortened the duration of SE by eliminating a secondary phase of intense seizures, which was evident in littermate controls. Our results are consistent with the idea that TRPC3 channels expressed by cerebral VSMCs contribute to the IHR during SE, which is a critical factor in the progression of SE.Fil: Cozart, Michael A.. University of Arkansas for Medical Sciences; Estados UnidosFil: Phelan, Kevin D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Wu, Hong. University of Arkansas for Medical Sciences; Estados UnidosFil: Mu, Shengyu. University of Arkansas for Medical Sciences; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Rusch, Nancy J.. University of Arkansas for Medical Sciences; Estados UnidosFil: Zheng, Fang. University of Arkansas for Medical Sciences; Estados Unido

    Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs

    Get PDF
    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P \u3c 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P \u3c 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P \u3c 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate

    Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis

    Get PDF
    Mouse cytomegalovirus (MCMV) susceptibility often results from defects of natural killer (NK) cell function. Here we describe Jinx, an N-ethyl-N-nitrosourea–induced MCMV susceptibility mutation that permits unchecked proliferation of the virus, causing death. In Jinx homozygotes, activated NK cells and cytotoxic T lymphocytes (CTLs) fail to degranulate, although they retain the ability to produce cytokines, and cytokine levels are markedly elevated in the blood of infected mutant mice. Jinx was mapped to mouse chromosome 11 on a total of 246 meioses and confined to a 4.60–million basepair critical region encompassing 122 annotated genes. The phenotype was ascribed to the creation of a novel donor splice site in Unc13d, the mouse orthologue of human MUNC13-4, in which mutations cause type 3 familial hemophagocytic lymphohistiocytosis (FHL3), a fatal disease marked by massive hepatosplenomegaly, anemia, and thrombocytopenia. Jinx mice do not spontaneously develop clinical features of hemophagocytic lymphohistiocytosis (HLH), but do so when infected with lymphocytic choriomeningitis virus, exhibiting hyperactivation of CTLs and antigen-presenting cells, and inadequate restriction of viral proliferation. In contrast, neither Listeria monocytogenes nor MCMV induces the syndrome. In mice, the HLH phenotype is conditional, which suggests the existence of a specific infectious trigger of FHL3 in humans

    Real-world outcomes of sipuleucel-T treatment in PROCEED, a prospective registry of men with metastatic castration-resistant prostate cancer.

    Get PDF
    BackgroundThe large registry, PROVENGE Registry for the Observation, Collection, and Evaluation of Experience Data (PROCEED)(NCT01306890), evaluated sipuleucel-T immunotherapy for asymptomatic/minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC).MethodsPROCEED enrolled patients with mCRPC receiving 3 biweekly sipuleucel-T infusions. Assessments included overall survival (OS), serious adverse events (SAEs), cerebrovascular events (CVEs), and anticancer interventions (ACIs). Follow-up was for ≥3 years or until death or study withdrawal.ResultsIn 2011-2017, 1976 patients were followed for 46.6 months (median). The median age was 72 years, and the baseline median prostate-specific antigen level was 15.0 ng/mL; 86.7% were white, and 11.6% were African American. Among the patients, 1902 had 1 or more sipuleucel-T infusions. The median OS was 30.7 months (95% confidence interval [CI], 28.6-32.2 months). Known prognostic factors were independently associated with OS in a multivariable analysis. Among the 1255 patients who died, 964 (76.8%) died of prostate cancer (PC) progression. The median time from the first infusion to PC death was 42.7 months (95% CI, 39.4-46.2 months). The incidence of sipuleucel-T-related SAEs was 3.9%. The incidence of CVEs was 2.8%, and the rate per 100 person-years was 1.2 (95% CI, 0.9-1.6). The CVE incidence among 11,972 patients with mCRPC from the Surveillance, Epidemiology, and End Results-Medicare database was 2.8%; the rate per 100 person-years was 1.5 (95% CI, 1.4-1.7). One or more ACIs (abiraterone, enzalutamide, docetaxel, cabazitaxel, or radium 223) were received by 77.1% of the patients after sipuleucel-T; 32.5% and 17.4% of the patients experienced 1- and 2-year treatment-free intervals, respectively.ConclusionsPROCEED provides contemporary survival data for sipuleucel-T-treated men in a real-world setting of new life-prolonging agents, which will be useful in discussing treatment options with patients and in powering future trials with sipuleucel-T. The safety and tolerability of sipuleucel-T in PROCEED were consistent with previous findings

    Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770

    Get PDF
    Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients

    Original research: Trauma exposure and posttraumatic stress disorder among employees of New York City companies affected by the september 11, 2001 attacks on the World Trade Center

    Get PDF
    OBJECTIVE: Several studies have provided prevalence estimates of posttraumatic stress disorder (PTSD) related to the September 11, 2001 (9/11) attacks in broadly affected populations, although without sufficiently addressing qualifying exposures required for assessing PTSD and estimating its prevalence. A premise that people throughout the New York City area were exposed to the attacks on the World Trade Center (WTC) towers and are thus at risk for developing PTSD has important implications for both prevalence estimates and service provision. This premise has not, however, been tested with respect to DSM-IV-TR criteria for PTSD. This study examined associations between geographic distance from the 9/11 attacks on the WTC and reported 9/11 trauma exposures, and the role of specific trauma exposures in the development of PTSD. METHODS: Approximately 3 years after the attacks, 379 surviving employees (102 with direct exposures, including 65 in the towers, and 277 with varied exposures) recruited from 8 affected organizations were interviewed using the Diagnostic Interview Schedule/Disaster Supplement and reassessed at 6 years. The estimated closest geographic distance from the WTC towers during the attacks and specific disaster exposures were compared with the development of 9/11–related PTSD as defined by the Diagnostic and Statistical Manual, Fourth Edition, Text Revision. RESULTS: The direct exposure zone was largely concentrated within a radius of 0.1 mi and completely contained within 0.75 mi of the towers. PTSD symptom criteria at any time after the disaster were met by 35% of people directly exposed to danger, 20% of those exposed only through witnessed experiences, and 35% of those exposed only through a close associate’s direct exposure. Outside these exposure groups, few possible sources of exposure were evident among the few who were symptomatic, most of whom had preexisting psychiatric illness. CONCLUSIONS: Exposures deserve careful consideration among widely affected populations after large terrorist attacks when conducting clinical assessments, estimating the magnitude of population PTSD burdens, and projecting needs for specific mental health interventions

    Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis

    No full text
    BACKGROUND: MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis. METHODS AND FINDINGS: By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p , 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1b, TNF-a, and IFN-c was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-c, TNF-a, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue. Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it does not ascertain the genetic or environmental drivers of ER stress in human colitis. CONCLUSIONS: Characterisation of the mouse models we created and comparison with human disease suggest that ER stress-related mucin depletion could be a fundamental component of the pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related pathology and relevant environmental epidemiology are warranted. The Editors’ Summary of this article follows the references
    • …
    corecore