5,722 research outputs found

    Thermoelectric properties of Al-doped mesoporous ZnO thin films

    Get PDF
    Al-doped mesoporous ZnO thin films were synthesized by a sol-gel process and an evaporation-induced self-assembly process. In this work, the effects of Al doping concentration on the electrical conductivity and characterization of mesoporous ZnO thin films were investigated. By changing the Al doping concentration, ZnO grain growth is inhibited, and the mesoporous structure of ZnO is maintained during a relatively high temperature annealing process. The porosity of Al-doped mesoporous ZnO thin films increased slightly with increasing Al doping concentration. Finally, as electrical conductivity was increased as electrons were freed and pore structure was maintained by inhibiting grain growth, the thermoelectric property was enhanced with increasing Al concentration. © 2013 Min-Hee Hong et al

    Quantum well intermixing for the fabrication of InGaAsN/GaAs lasers with pulsed anodic oxidation

    Get PDF
    Quantum well (QW) intermixing was carried out by post-growth rapid thermal annealing in InGaAsN/GaAs QW laser structures grown by solid-source molecular-beam epitaxy. The intensity and width of the photoluminescence peak showed a dependence on annealing temperature and time, and the maximum intensity and minimum linewidth were obtained after the wafer was annealed at 670 °C for 60 s. The peak luminescence energy blueshifted with increasing annealing time, although it plateaued at an annealing time that corresponded to that yielding the maximum luminescence intensity. The diffusion coefficient for indium was determined from a comparison between experimental data and modeling, but showed that QW intermixing alone was not sufficient to account for the relatively large blueshift after annealing. Defects related to the incorporation of nitrogen in the QW layer were responsible for the low photoluminescence efficiency in the as-grown samples and were annealed out during rapid thermal annealing. During annealing, nitrogen interstitials moved to vacancy sites within the QW and thus suppressed QW intermixing. After annealing wafers under conditions giving the maximum luminescence intensity, lasers were fabricated with pulsed anodic oxidation. © 2004 American Institute of Physics.published_or_final_versio

    TLR9 regulates adipose tissue inflammation and obesity-related metabolic disorders

    Get PDF
    ObjectiveRecent studies have revealed a link between Toll-like receptor (TLR) signaling and the adipose tissue inflammation associated with obesity. Although TLR9 is known to play an important role in inflammation and innate immunity, its role in mediating adipose tissue inflammation has not yet been investigated. Thus, the objective of this study was to determine the role of TLR9 in regulating immune cells in visceral adipose tissue and maintaining the metabolic homeostasis. MethodsWild-type and TLR9-deficient mice were fed with a high-fat diet, and the body weight gain, glucose tolerance, insulin sensitivity, and adipose tissue inflammation were examined. ResultsTLR9-deficient mice gained significantly more weight and body fat under a high-fat diet than wild-type mice and exhibited more severe glucose intolerance and insulin resistance. We also found a dramatic increase of M1 macrophages as well as T(H)1 cells in the adipose tissue of TLR9-deficient mice compared to wild-type mice. Furthermore, the levels of various proinflammatory cytokines and chemokines were higher in TLR9-deficient mice. ConclusionsTLR9 signaling is involved in regulating adipose tissue inflammation and controlling obesity and the metabolic syndrome.1174Ysciescopu

    Effect of surfactant concentration variation on the thermoelectric properties of mesoporous ZnO

    Get PDF
    The electrical and thermal conductivities and the Seebeck coefficient of mesoporous ZnO thin films were investigated to determine the change of their thermoelectric properties by controlling surfactant concentration in the mesoporous ZnO films, because the thermoelectric properties of mesoporous ZnO films can be influenced by the porosity of the mesoporous structures, which is primarily determined by surfactant concentration in the films. Mesoporous ZnO thin films were successfully synthesized by using sol-gel and evaporation-induced self-assembly processes. Zinc acetate dihydrate and Brij-76 were used as the starting material and pore structure-forming template, respectively. The porosity of mesoporous ZnO thin films increased from 29% to 40% with increasing surfactant molar ratio. Porosity can be easily altered by controlling the molar ratio of surfactant/precursor. The electrical and thermal conductivity and Seebeck coefficients showed a close correlation with the porosity of the films, indicating that the thermoelectric properties of thin films can be changed by altering their porosity. Mesoporous ZnO thin films with the highest porosity had the best thermoelectric properties (the lowest thermal conductivity and the highest Seebeck coefficient) of the films examined. © 2013 Min-Hee Hong et al

    Spectral Grouping of Electrically Encoded Sound Predicts Speech-in-Noise Performance in Cochlear Implantees

    Get PDF
    \ua9 2023, The Author(s). Objectives: Cochlear implant (CI) users exhibit large variability in understanding speech in noise. Past work in CI users found that spectral and temporal resolution correlates with speech-in-noise ability, but a large portion of variance remains unexplained. Recent work on normal-hearing listeners showed that the ability to group temporally and spectrally coherent tones in a complex auditory scene predicts speech-in-noise ability independently of the audiogram, highlighting a central mechanism for auditory scene analysis that contributes to speech-in-noise. The current study examined whether the auditory grouping ability also contributes to speech-in-noise understanding in CI users. Design: Forty-seven post-lingually deafened CI users were tested with psychophysical measures of spectral and temporal resolution, a stochastic figure-ground task that depends on the detection of a figure by grouping multiple fixed frequency elements against a random background, and a sentence-in-noise measure. Multiple linear regression was used to predict sentence-in-noise performance from the other tasks. Results: No co-linearity was found between any predictor variables. All three predictors (spectral and temporal resolution plus the figure-ground task) exhibited significant contribution in the multiple linear regression model, indicating that the auditory grouping ability in a complex auditory scene explains a further proportion of variance in CI users’ speech-in-noise performance that was not explained by spectral and temporal resolution. Conclusion: Measures of cross-frequency grouping reflect an auditory cognitive mechanism that determines speech-in-noise understanding independently of cochlear function. Such measures are easily implemented clinically as predictors of CI success and suggest potential strategies for rehabilitation based on training with non-speech stimuli

    Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

    Get PDF
    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the Delta dblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+) T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1 beta. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra.open111815sciescopu

    Massive integration of inorganic nanowire-based structures on solid substrates for device applications

    Get PDF
    Inorganic nanowire-based devices have recently drawn extensive attention as one of the next-generation device architectures. Nevertheless, a lack of mass-production methods has been one of the major hurdles holding back the practical applications of such devices. Herein, we review three promising strategies for the massive assembly of inorganic nanowires for their device applications, which are topically selected: selective growth, selective assembly, and direct printing methods. The advantages and disadvantages of these methods are also discussed.open111111Nsciescopu

    Nanobodies raised against monomeric alpha-synuclein inhibit fibril formation and destabilize toxic oligomeric species

    Get PDF
    BACKGROUND: The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson’s disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. RESULTS: We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. CONCLUSIONS: The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu
    corecore