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Abstract
Objectives Cochlear implant (CI) users exhibit large variability in understanding speech in noise. Past work in CI users 
found that spectral and temporal resolution correlates with speech-in-noise ability, but a large portion of variance remains 
unexplained. Recent work on normal-hearing listeners showed that the ability to group temporally and spectrally coherent 
tones in a complex auditory scene predicts speech-in-noise ability independently of the audiogram, highlighting a central 
mechanism for auditory scene analysis that contributes to speech-in-noise. The current study examined whether the auditory 
grouping ability also contributes to speech-in-noise understanding in CI users.
Design Forty-seven post-lingually deafened CI users were tested with psychophysical measures of spectral and temporal 
resolution, a stochastic figure-ground task that depends on the detection of a figure by grouping multiple fixed frequency 
elements against a random background, and a sentence-in-noise measure. Multiple linear regression was used to predict 
sentence-in-noise performance from the other tasks.
Results No co-linearity was found between any predictor variables. All three predictors (spectral and temporal resolution 
plus the figure-ground task) exhibited significant contribution in the multiple linear regression model, indicating that the 
auditory grouping ability in a complex auditory scene explains a further proportion of variance in CI users’ speech-in-noise 
performance that was not explained by spectral and temporal resolution.
Conclusion Measures of cross-frequency grouping reflect an auditory cognitive mechanism that determines speech-in-noise 
understanding independently of cochlear function. Such measures are easily implemented clinically as predictors of CI suc-
cess and suggest potential strategies for rehabilitation based on training with non-speech stimuli.

Keywords Cochlear implants · Auditory grouping · Speech-in-noise

Introduction

Although cochlear implants (CIs) have been a singularly 
successful intervention for patients with severe sensorineu-
ral hearing loss, variability in speech perception outcomes 
among CI users remains a pervasive issue [1]. Much of this 
variability derives from peripheral factors related to the elec-
trode-neuron interface such as the electrode placement [2], 
inflammatory intracochlear responses to electrodes [3], and 
the degree of neural trauma and health [4] that may affect 
current spread. Indeed, reducing the current spread through 
programming changes improves spectral resolution [5–8], 
while it is evident that spectral resolution is correlated with 
speech perception performance in cochlear implant users  
[9–17]. The electrode configuration and encoding strat-
egy also affect temporal resolution (as reflected in gap  
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detection performance: [18]) as well as changes in the fre-
quency mapping between the implant and the auditory nerve 
[19]. Nonetheless, even established CI users with similar 
audiometric profiles differ in performance, particularly  
for listening to speech in noise [20, 21]. This suggests that 
additional variation in perceptual and cognitive processes 
may account for some differences in speech perception. 
However, the neural and computational mechanisms that 
underlie these central processes are poorly understood.

The ability to unmask speech from noise is an example 
of auditory scene analysis (ASA) [22]. This entails multi-
ple sensory and cognitive operations including (1) sensory 
encoding of the acoustic signal, (2) grouping and separation 
of acoustic features to form auditory objects (Darwin, 1997), 
and (3) across-object competition. Individual differences in 
speech-in-noise understanding may originate from each of 
these. In normal-hearing (NH) listeners, there is evidence 
that speech-in-noise success is related to individual differ-
ences in some ASA subskills, including encoding of suprath-
reshold dynamics [23] and auditory grouping [24, 25].

In CI users, a large portion of previous work investigat-
ing variability in speech-in-noise outcomes has focused on 
the first process above, the quality of the sensory encoding 
carried out by the peripheral auditory system in conjunction 
with the CI [14, 26]. Auditory stream segregation has also 
been studied in the CI population. Earlier studies reported 
that spectral separation (i.e. electrode position) is an impor-
tant cue for CI users’ stream segregation of repetitive A-B-A 
alternating tone sequences [27, 28], while a later study found 
that CI users could segregate streams with the temporal cue 
(i.e., pulse rate) alone [29]. For the task of segregating a 
melody from randomly interleaved tones, CI users relied 
more on intensity and temporal envelope information than on 
fundamental frequency and spectral envelope information, 
although all four of the aforementioned cues contributed to 
the performance significantly [30]. Paredes-Gallardo et al. 
also reported that CI users can use both place (i.e., the elec-
trode position) and temporal (i.e., the pulse rate) information 
to separate concurrent tone sequences [31, 32]. The degree 
of endogenous attention that facilitates the segregation also 
showed a relationship with speech-in-noise perception [33, 
34]. However, most ASA studies in CI users utilized rela-
tively simple tone stimuli (e.g., [35]), from which it is dif-
ficult to draw conclusions about (1) how CI users perform 
auditory grouping of complex auditory scenes, and (2) how 
such an auditory grouping ability contributes to speech-in-
noise perception in CI users. Given the dramatic degrada-
tion of the auditory input in CI users, does variability in 
higher-order auditory-cognitive processes matter as much? 
To address this question, the present study tests the contri-
bution of mechanisms for grouping together elements of an 
auditory object that have different frequencies to speech-
in-noise understanding in CI users. We accomplished this 

with a stochastic figure-ground task (SFG: [36]), in which 
listeners detect a synthetic auditory object with elements 
at multiple frequencies in a background of similar noise. 
The stimulus (Fig. 1) starts with a background of random 
frequency elements (short tone pips) in frequency-time 
space; at some point, a number of these elements exhibit a 
fixed frequency over time (“Figure + Ground Example” 
in Fig. 1), constituting the object. The listener’s task is to 
detect whether an object occurred (on half the trials, there 
is no object, just random frequency elements: “Ground-only 
Example” in Fig. 1).

In NH listeners, behavioral measures of SFG perception 
correlated with speech-in-noise ability independently of 
the audiometric thresholds, which ranged between −10 and 
20 dB SPL in the frequency range of 250–8000 Hz, when 
the SFG stimuli were presented at a fixed level for all the 
participants [24], validating the crucial role of this ability 
for speech-in-noise perception. Previous studies support the 
idea that a possible mechanism that makes the SFG task 
doable is detecting temporal coherence between figure ele-
ments [37], which occurs in and beyond the auditory cortex 
[36, 38, 39]. Electrical hearing in CI users preserves the 
temporal envelope of the signal in different frequency bands, 
while limiting the temporal fine structure cues. In principle, 
such a mechanism that utilizes temporal coherence of mul-
tiple frequency components across different channels could 
also allow CI users to detect the figure elements in the SFG 
stimuli. This study aimed to measure individual differences 
in the ability of CI users to detect figures that are encoded 
electrically and test the correlation of these with speech-in-
noise performance that is not mediated by peripheral fidelity.

Forty-seven post-lingually deafened CI users performed 
a sentence-in-noise understanding task (AzBio: [40]) along 
with a SFG detection task. Our experiment had to address 
two further concerns.

First, our CI users span a range of devices, and many 
supplement the electrical hearing of the CI with acoustic 
hearing from an ispi- or contra-lateral hearing aid (hybrid or 
bimodal listeners, respectively). To control for these differ-
ences, and to determine whether such grouping mechanisms 
are available based on the CI input alone, SFG stimuli were 
constructed to only span the frequency ranges used for elec-
tric (CI) hearing.

Second, as mentioned above, a critical factor in speech-
in-noise in CI users is the degree of encoding fidelity in the 
auditory periphery—this is predicted to relate to both speech 
perception, speech-in-noise ability, and SFG performance. To  
thus account for these differences, we also assessed encod-
ing fidelity using a spectral ripple discrimination task (which  
measures the frequency resolution ability: [41, 42]) and a 
temporal modulation detection task (which measures fidel-
ity in time) for use as additional predictor variables. For our 
spectral ripple test, to avoid potential aliasing due to the 
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sparse spectral sampling of CI processors when the ripple 
density is high [43], we fixed the ripple density and var-
ied the depth. A previous study on normal hearing listeners 
reported an interrelation between the ripple depth and den-
sity thresholds [44].

The peripheral and central measures were used as pre-
dictor variables of AzBio performance in a multiple linear 
regression model. Our principal hypothesis is that central 
grouping of the electrical signal in CI users explains vari-
ance in AzBio performance independently of spectral and 
temporal resolution.

Materials and Methods

Participants

Forty-seven CI users, between 20 and 79  years of age 
(mean = 60.9 years, SD = 12.1 years; median = 63.3 years; 
46.8% female), were recruited from the University of Iowa 
Cochlear Implant Clinical Research Center. Demographic 
and audiological characteristics were obtained from clini-
cal records. All the participants were neurologically 

normal. The average length of device use was 39.5 months 
(SD = 56.8 months). The average duration of deafness (i.e., 
patients’ experience of severe hearing loss) was 22.0 years 
(SD = 15.0 years). Five subjects were bilateral CI users. 
Among the remaining subjects, 66.1% had a CI in the  
right ear. Most of the current CI sample had some resid-
ual acoustic hearing usually in the low frequency ranges. 
A minority (23.7%) used bimodal configurations (electric 
stimulation in one ear and acoustic in the other) while the 
majority (76.3%) used a hybrid configuration (electric and 
acoustic stimulation within the same ear). Their hearing 
aids were in place during testing. The average threshold 
of low-frequency (i.e., 250 and 500 Hz) residual acoustic 
hearing in the better ear was 59.4 dB HL (SD = 20.5 dB 
HL). All CI users had post-lingual onset of deafness (i.e., 
onset of hearing loss later than 16 years old) and spoke 
American English as their primary language. See Sup-
plementary Table 1 for the list of participants and their  
demographic information.

Most participants were tested during the same day as a 
clinical visit in which they received an annual audiological 
examination and device tuning. All participants were tested 
in the best-aided condition, which is the one they use most 

Fig. 1  A Example stimulus spectrograms for the two trial types of the 
figure-ground task. B Electrodograms of the two example stimuli. C 
Comparison of integrated current levels between Ground-only and 

Figure+Ground stimuli in the 2–4 s period where the emergence of 
a “figure” is expected. N.S. indicates no significant difference found 
from a Mann-Whitney Rank Sum test (p = 0.94)
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often in real life. All study procedures were reviewed and 
approved by the local Institutional Review Board. All the 
participants provided written informed consent.

Task Design and Procedures

All CI users performed the spectral ripple discrimination, 
temporal modulation detection, SFG, and speech in noise 
(AzBio) tasks. All tasks were performed in a double-walled 
sound booth using sound-field presentation from a single 
LOFT40, JBL speaker in the midline placed 1.5 m from 
the subject.

Speech‑in‑Noise: AzBio

Performance on a sentence-in-noise task (AzBio: [40]) was 
used as a dependent variable in the later multiple linear 
regression analysis to predict CI individuals’ speech-in-
noise ability. Our AzBio task was performed at +5 dB SNR 
at 70 dB SPL. Subjects heard a sentence and had to repeat 
it aloud. Outside of the sound booth, an audiologist counted 
the number of correctly repeated words. Performance was 
calculated as the ratio of correctly repeated words to the 
total number of words in all the twenty presented sentences.

Spectral Ripple and Temporal Modulation

Both the spectral ripple and temporal modulation tasks used 
an Updated Maximum-Likelihood (UML) adaptive proce-
dure. On each trial, participants performed an oddball task 
in which they heard three sounds and indicated which dif-
fered from the other two in either spectral peak (i.e., the 
phase of spectral ripple) or modulation frequency (see 
below). Stimuli for both tasks were generated in MATLAB 
at the time of testing. The discrimination sequence used an 
Updated Maximum-Likelihood (UML) adaptive procedure 
[45]. UML is a Bayesian adaptive procedure which estimates 
a psychophysical function on each trial and uses the current 
estimate to identify the stimulus (e.g., the degree of ripple 
depth) that would be optimally informative to test on the 
next trial. This can lead to more robust estimates of perfor-
mance with fewer trials than traditional staircase procedures.

Our implementation assumed a three-parameter logis-
tic as the psychometric function with free parameters for 
threshold (which captures something akin to the just notice-
able difference), slope (sensitivity), and guess rate. The 
crossover (expressed in terms of dB of depth) was used as 
our primary estimate of an individual’s perceptual fidelity 
on each dimension. That is, crossover indicates discrimina-
tion ability along spectral and temporal dimensions in each 
respective task.

Priors (mean and SD) of all three parameters were based 
on pilot data from 40 CI users. In the UML, the initial 

stimulus is governed by the priors, and after each response, 
the psychophysical function is refit. Subsequent trials are 
then adaptively generated based on the predictions of the 
UML procedure given the subject’s responses. Unlike tradi-
tional tasks, the UML procedure adaptively predicts what to 
test to best estimate an individual’s psychometric function.

For the spectral ripple task, the ripple stimulus was 
broadband noise that was sinusoidally modulated in log- 
frequency space. Ripple density was 1.25 ripples per 
octave—a low density meant to capture the kind of spectral 
shapes relevant to speech (e.g., the formants of a vowel) 
and avoid CI-related artifacts at high densities [43]. The 
amplitude depth of the ripples (in dB) was manipulated 
based on the UML predictions. On each trial, two standard 
sounds were created with a randomized starting location 
for the spectral peak, and the oddball was created with an 
inverted phase to be maximally distinct. Each trial’s standard 
and oddball intervals had the same ripple depth.

For the temporal modulation detection task, the stimulus 
was a five-component sound with frequencies at 1515, 2350, 
3485, 5045, and 6990 Hz. The whole sound was sinusoidally 
amplitude modulated at a rate of 20 Hz, and the modula-
tion depth was determined by UML prediction. Trials either 
had two modulated sounds, where the oddball was unmodu-
lated, or two unmodulated sounds, where the oddball was 
modulated.

Stimuli for both tasks were 500 ms in duration and lin-
early ramped with a 50 ms rise/fall. To compensate for inten-
sity differences in the modulated stimuli, root mean square 
values were equalized, and the presentation level was roved 
randomly across the three sounds by between −3 and +3 dB. 
This randomness should deter the use of loudness as a reli-
able cue.

The task was a 3-interval, 3-alternative forced-choice 
oddball detection paradigm. The task was implemented 
using Psychtoolbox 3 [46] in MATLAB (The Mathworks). 
On each trial, two standard stimuli and one oddball were 
played in random order with an ISI of 750 ms. A numbered 
box appeared on the computer screen as each stimulus 
played. Subjects were instructed to choose the token that 
differed from the other two. Responses could be made by 
numeric keypad or by mouse-click within the corresponding 
box on the screen. The UML approach allowed the tasks to 
be much shorter than traditional staircase measures; each 
task was 70 trials. Both tasks began with 4 practice trials 
to familiarize the subject with the procedure, and correct/
incorrect feedback was given on every trial.

SFG

The SFG stimuli were generated as in [37]. Each time-
segment contained a fixed number of components at random 
frequencies in log-frequency space. In trials containing a 
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figure, a proportion of the components were constrained 
to remain the same over each time segment to create a 
figure with fixed frequency components that subjects were 
required to detect among a random background of frequency 
components. All the tone pips were constrained to be above 
1 kHz so that even for subjects with residual low-frequency 
hearing, figure detection required only the electric range 
(and the acoustic hearing would most likely be unhelpful). 
The stimulus therefore assessed electrical grouping in all 
subjects, regardless of their hearing configuration. The 
spectral separation of elements was constrained to be at least 
a half octave to reduce the likelihood of frequency resolution 
abilities confounding the results. Figure 1A shows example 
spectrograms of ground-only and figure + ground stimuli. 
Figure  1B shows the electrodograms of example SFG 
stimuli, generated based on the 22-channel Cochlea device 
with the ACE sound coding strategy. Section 2.2 of Yang 
et al. [17] describes how the electrodograms are generated. 
Using the electrodograms, we compared integrated current 
levels between all the Ground-only and Figure+Ground 
stimuli in the 2–4 s period (where the emergence of a “figure” 
is expected). No significance difference was found between 
the current levels (Mann-Whitney Rank Sum test, p = 0.94), 
indicating that the overall current level difference could not 
be used to perform the task (Fig. 1C).

All stimuli were created using MATLAB software (The 
Mathworks) at a sampling rate of 44.1 kHz and 16-bit 
resolution. Extensive piloting with CI listeners was con-
ducted to determine stimulus characteristics that were 
never associated with floor or ceiling effects. We used 
a stimulus that consisted of 50-ms segments, each con-
taining eight frequency components. The whole stimulus 
was 4 s-long. For the first half (ground portion) of 40 

segments, each segment was created from a selection of 
eight separate randomly selected frequencies drawn from 
a distribution of 145 components separated by 1/48th of 
an octave across 1–8 kHz. On a “ground” trial, the second 
half comprised 40 segments constructed in the same way 
as the first half. On a “figure” trial (see Fig. 1), the second 
half of 40 segments was constructed from components in 
which six of the eight stayed at the same frequency to cre-
ate a “figure”. The other two components were selected at 
random frequencies.

The SFG task was implemented in custom-written MAT-
LAB scripts (The Mathworks) using Psychtoolbox 3 [46]. 
Instructions were presented via a computer monitor located 
0.5 m in front of the subject at eye level. Sound levels were 
the same across subjects, presented at 70 dB SPL. At this 
presentation level, very few participants could use their 
residual acoustic hearing to hear the SFG stimuli; see the 
white areas in Fig. 2 that depicts the audibility zone of our 
SFG stimuli (i.e., above 70 dB SPL, above 1 kHz).

On each trial, participants saw the trial number dis-
played for 600 ms. This then cleared to display a fixation 
cross for 1 s before the start of the sound. After the sound 
and a 100 ms pause, a text prompt to respond was shown on 
the screen (‘Target? 1: Yes, 2: No’). Subjects then had up to 
10 s to respond by a numeric keypad to indicate if a figure 
was detected. Once a response was recorded, the fixation 
cross was shown, and a delay of 600 ms occurred until 
the start of the next sound. One hundred and twenty trials 
were presented with a figure occurring in a random half; 
a break was given after 40 trials. One hundred and twenty 
unique different stimuli were pre-generated and presented 
in a random order. All the subjects were presented with the 
same set of 120 stimuli but in a different order.

Fig. 2  Residual acoustic hearing 
thresholds of all the participants 
represented in dB SPL as a 
function of stimulus frequency. 
The hearing thresholds were 
measured without a CI or hear-
ing aids. The white areas depict 
the audibility zone of our SFG 
stimuli (i.e., above 70 dB SPL, 
above 1 kHz)
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Statistical Analyses

Initial exploratory analyses related each predictor to each 
other and to AzBio performance using bivariate correlations. 
Our primary analysis related each predictor to speech per-
ception performance on AzBio using multiple regression to 
assess the impact of SFG while controlling for the periphery. 
The final model is given in (1), in the syntax of the regres-
sion function in R (lm()).

Here, Speech Perception is accuracy on the AzBio task, 
SFG is performance on the SFG task expressed in terms of 
d’. SpecRipple and TempMod refer to the crossover param-
eter of the psychophysical discrimination function expressed 
in dB of depth.

Results

Evaluation of Independent Variables  
in Bivariate Analyses

We started by evaluating the correlations among all the inde-
pendent variables to check for co-linearity prior to multiple 
linear regression analysis. No significant correlations were 
found between any predictor variables. The relationship 
between the predictor variables is shown in Fig. 3 as scat-
ter plots. This showed first that spectral and temporal fidel-
ity were uncorrelated, suggesting (as predicted) that they 
comprise two independent dimensions of auditory encoding 

(1)
Speech Perception ∼ 1 + SFG + SpecRipple + TempMod

fidelity in CI users. Second, SFG performance was not cor-
related with spectral fidelity and only trending toward a 
significant correlation with temporal fidelity. This suggests 
that—also as expected—the stimuli that were used did not 
strongly relate to peripheral fidelity for CI users. In addition, 
we compared the average threshold of low-frequency (i.e., 
250 and 500 Hz) residual acoustic hearing in the better ear 
to the predictor variables, as shown in the bottom panels 
of Fig. 3. No correlation was found between the residual 
acoustic hearing thresholds and the independent variables.

To test the next assumption for multiple regression that 
the independent variables should be correlated with the 
dependent variable, we conducted bivariate analyses exam-
ining correlations between each independent variable and 
AzBio accuracy. SFG, spectral, and temporal fidelity exhib-
ited a statistically significant correlation with speech-in-
noise ability. However, residual acoustic hearing thresholds 
did not; thus, we did not use the acoustic thresholds as a 
predictor variable in the following multiple linear regression 
analysis. These are shown in Fig. 4. In all three cases with 
significant correlations, better performance (higher SFG, 
lower ripple or temporal modulation threshold) predicted 
better AzBio performance.

Multiple Linear Regression

Following bivariate analyses, we conducted a multiple lin-
ear regression analysis to determine which of the independ-
ent variables predicted AzBio accuracy when accounting 
for all others (see Table 1 and Fig. 5A). When adjusted for 
the number of independent variables, the model accounted 
for 46.3% of the variance in AzBio accuracy (see Fig. 5B), 

Fig. 3  Results from predictor 
co-linearity analysis. Acoustic 
threshold: better-ear low-
frequency (250 and 500 Hz) 
residual acoustic hearing 
thresholds. Temporal and 
spectral modulation thresholds 
are expressed in dB (depth of 
the modulation). No significant 
correlations were observed
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F(3, 43) = 12.4, p < 0.00001, adjusted R2 = 0.426. All three 
predictors reached statistical significance. Critically, the 
effect of SFG was significant—and positively related to out-
comes—even after accounting for the auditory periphery 
(Fig. 5C). This was the same for the spectral ripple and the 

temporal modulation thresholds; as shown in Fig. 6, each 
predictor variable showed a significant correlation even after 
regressing out the other predictor variables.

Discussion

In this study, post-lingually deafened CI users performed a 
SFG task in which listeners detected temporally coherent 
frequency components against a random background. The 
bivariate correlation between figure-detection performance 
(d-prime) and sentence-in-noise performance (AzBio score) 
reached r = 0.45 (p < 0.005). Moreover, multiple linear 
regression demonstrated a significant effect of figure detec-
tion (normalized beta coefficient = 0.29, p < 0.05) even after 
accounting for the fidelity of spectral and temporal encoding 
in the auditory periphery. The combined model explained 
46% of the variance in speech-in-noise performance. This 

Fig. 4  Results from bivariate correlation analyses. Acoustic threshold: better-ear low-frequency (250 and 500  Hz) residual acoustic hearing 
thresholds

Table 1  Results from multiple linear regression on speech-in-noise 
accuracy (N = 47, R2 = 0.463)

AzBio β (normalized) SE T(43) p Partial ρ

SFG 0.292 0.117 2.51 0.0160 0.357
Spectral 

ripple 
thresholds

−0.250 0.114 −2.18 0.0345 −0.316

Temporal 
modu-
lation 
thresholds

−0.434 0.117 −3.72 < 0.001 −0.493

Fig. 5  Results from multiple linear regression analysis. A Main 
effects of predictor variables. B Relationship between estimated 
AzBio accuracy (i.e., the model output) and measured AzBio accu-

racy (i.e., the dependent variable). C Relationship between SFG accu-
racy and the residual of AzBio accuracy after regressing out the other 
two predictor variables (i.e., spectral and temporal resolution)
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work has therefore established a relationship between a sim-
ple measure of the cross-frequency grouping of electrically 
coded signals to speech-in-noise ability.

This result suggests an auditory-cognitive mechanism 
of auditory grouping as one of the factors that contributes 
to speech-in-noise performance. Adopting the SFG task in 
clinics may reveal a source of speech-in-noise difficulty in 
CI users. For example, the SFG stimuli can be adjusted to 
make the figure elements occur in the specific frequency 
range to be tested, or occur across two different devices (e.g., 
electric and acoustic) so that the perceptual fusion across  
devices can be tested. When combined with device repro-
gramming or perceptual training, the SFG task may test the 
change in the cross-electrode processing. It is also advanta-
geous that the SFG task is language independent, although 
it means that language-specific abilities would be  un- 
tested by this task.

The relatively large sample size in this study provided an 
opportunity to investigate the relative contributions of spec-
tral and temporal resolution to the prediction of speech-in-
noise performance through multiple linear regression. The 
correlation between speech-in-noise performance and spec-
tral [14] and temporal resolution [26, 47, 48] has been repro-
duced well by this study, although it should be noted that 
most previous studies that reported a relationship between 
spectral resolution and speech perception varied the spectral 
ripple density, not depth. In this study, temporal resolution 
showed stronger correlation with speech-in-noise perfor-
mance than spectral resolution, as well as greater contribution 
to the prediction of speech-in-noise in the linear regression 
model. This finding is consistent with many previous studies 
that showed the importance of temporal envelope encoding 
in CIs for successful speech perception [48–51]. However, 
this finding (i.e., temporal resolution demonstrating greater 
importance than spectral) is inconsistent with a previous 
study that directly compared the correlations of spectral and 

temporal resolution with speech-in-noise performance and 
showed a better correlation of spectral resolution (e.g., [26]). 
This inconsistency can be due to the difference in the spectral 
resolution test (i.e., varying ripple density vs. varying depth), 
the difference in the stimuli (AzBio sentences in this study 
vs. single words in [26]) or CI device types.

The figure detection ability during the SFG task is 
unlikely the only auditory cognitive mechanism that contrib-
utes to speech-in-noise performance. Although forty-seven 
is a relatively large sample size for a CI study, the number 
of predictor variables was limited to three to ensure reason-
able statistical power. A future larger study should consider 
more auditory-cognitive mechanisms (e.g., auditory working 
memory: [52–54], auditory selective attention: [33, 34, 55]) 
as well as linguistic and general cognitive mechanisms [56].

We carefully designed the stimuli for the SFG task so that 
they are only perceived in the electric hearing region. This 
was to control the different level of residual acoustic hearing 
among subjects. A future study may focus on the contribu-
tion of the residual or contralateral acoustic hearing, also 
its integration with electric hearing, to the figure detection 
during the SFG task.

This study has a few limitations. First, it is possible that 
the SFG ability captured different kinds of auditory periph-
ery fidelity that were not reflected in spectral ripple and 
temporal modulation discrimination tasks. For example,  
the electrode-neuron interface could be poorer in some CI 
users than others [57–59], which could result in degraded SFG  
and speech-in-noise perception. To rule out this alternative 
interpretation, a future study should utilize an electrophysi-
ological measure of peripheral encoding.

Second, although we carefully engineered the frequency 
range, level, and the frequency distance between the ele-
ments of our SFG stimuli, “equal electrical hearing” is still 
not guaranteed due to the heterogeneity of device types. For 
example, loudness summation between electrodes can be 

Fig. 6  Relationship of spectral 
ripple and temporal modulation 
thresholds with the residual of 
AzBio accuracy after regress-
ing out the other two predictor 
variables



Spectral Grouping Predicts CI Speech-in-Noise...

1 3

different for different CI devices. To avoid this confounding 
factor, a future study may (1) test a cohort of the same device 
type or (2) utilize electrodograms to quantify the device dif-
ferences and use the measure as a predictor variable. It has to 
be noted that the electrodogram in Fig. 1B is for a represent-
ative device. It does not account for the differences in the 
device types and the variance of electrode-neuron interface.  
Some individuals whose electrodes are not perfectly matched 
for level could use loudness cues. Also, any hearing aids 
could be turned off during the SFG task to further prevent 
the contribution of acoustic hearing.

Our future studies will follow our CI participants to exam-
ine changes in their SFG ability along with the changes in  
their peripheral encoding acuity (as in previous studies that 
have monitored changes in CI peripheral encoding over time: 
[60, 61]) as well as speech-in-noise performance. This lon-
gitudinal study will help us dissociate the contributions of 
the periphery to SFG ability, if their pattern of change dif-
fers over time. Also, a future study can use the SFG task 
for auditory perceptual training after cochlear implantation. 
For example, the auditory “figure” can be presented with 
simultaneous visual cues until the auditory system learns 
how to detect the figure.
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