123 research outputs found

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √ s = 5.02 and 13 TeV

    No full text
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the center of mass energies of √s=5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within 0.8pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and nonsingle-diffractive events as well as for inelastic events with at least one charged particle having |η|2GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at √s=13TeV.

    First measurement of prompt and non-prompt D⁎+ vector meson spin alignment in pp collisions at √s=13 TeV

    No full text
    This letter reports the first measurement of spin alignment, with respect to the helicity axis, for D∗+ vector mesons and their charge conjugates from charm-quark hadronisation (prompt) and from beauty-meson decays (non-prompt) in hadron collisions. The measurements were performed at midrapidity (|y|<0.8) as a function of transverse momentum (pT) in proton-proton (pp) collisions collected by ALICE at the centre-of-mass energy s√=13 TeV. The diagonal spin density matrix element ρ00 of D∗+ mesons was measured from the angular distribution of the D∗+→D0(→K−π+)π+ decay products, in the D∗+ rest frame, with respect to the D∗+ momentum direction in the pp centre of mass frame. The ρ00 value for prompt D∗+ mesons is consistent with 1/3, which implies no spin alignment. However, for non-prompt D∗+ mesons an evidence of ρ00 larger than 1/3 is found. The measured value of the spin density element is ρ00=0.455±0.022(stat.)±0.035(syst.) in the 5<pT<20 GeV/c interval, which is consistent with a PYTHIA 8 Monte Carlo simulation coupled with the EVTGEN package, which implements the helicity conservation in the decay of D∗+ meson from beauty mesons. In non-central heavy-ion collisions, the spin of the D∗+ mesons may be globally aligned with the direction of the initial angular momentum and magnetic field. Based on the results for pp collisions reported in this letter it is shown that alignment of non-prompt D∗+ mesons due to the helicity conservation coupled to the collective anisotropic expansion may mimic the signal of global spin alignment in heavy-ion collisions

    Measurement of non-prompt D0-meson elliptic flow in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic flow (v2) of D0 mesons from beauty-hadron decays (non-prompt D0) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The D0 mesons were reconstructed at midrapidity (|y|<0.8) from their hadronic decay D0→K−π+, in the transverse momentum interval 2<pT<12 GeV/c. The result indicates a positive v2 for non-prompt D0 mesons with a significance of 2.7σ. The non-prompt D0-meson v2 is lower than that of prompt non-strange D mesons with 3.2σ significance in 2<pT<8 GeV/c, and compatible with the v2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≀mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟹p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region

    System-size dependence of the charged-particle pseudorapidity density at √sNN = 5.02 TeV for pp, p–Pb, and Pb–Pb collisions

    No full text
    We present the first systematic comparison of the charged-particle pseudorapidity densities for three widely different collision systems, pp, p-Pb, and Pb-Pb, at the top energy of the Large Hadron Collider (sNN−−−√=5.02 TeV) measured over a wide pseudorapidity range (−3.5<η<5), the widest possible among the four experiments at that facility. The systematic uncertainties are minimised since the measurements are recorded by the same experimental apparatus (ALICE). The distributions for p-Pb and Pb-Pb collisions are determined as a function of the centrality of the collisions, while results from pp collisions are reported for inelastic events with at least one charged particle at midrapidity. The charged-particle pseudorapidity densities are, under simple and robust assumptions, transformed to charged-particle rapidity densities. This allows for the calculation and the presentation of the evolution of the width of the rapidity distributions and of a lower bound on the Bjorken energy density, as a function of the number of participants in all three collision systems. We find a decreasing width of the particle production, and roughly a smooth ten fold increase in the energy density, as the system size grows, which is consistent with a gradually higher dense phase of matter

    Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

    No full text
    A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson K0S and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s√=5.02 TeV and s√=13 TeV using the ALICE detector at the LHC. The per-trigger yields of K0S and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/K0S yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to K0S is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The K0S and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of K0S and Ξ±

    Study of flavor dependence of the baryon-to-meson ratio in proton–proton collisions at √s= 13 TeV

    No full text
    The production cross sections of D0 and Λ+c hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity (|y|<0.5) by the ALICE Collaboration in proton-proton collisions at a center-of-mass energy s√=13 TeV. They are described within uncertainties by perturbative QCD calculations employing the fragmentation fractions of beauty quarks to baryons measured at forward rapidity by the LHCb Collaboration. The bbÂŻÂŻÂŻ production cross section per unit of rapidity at midrapidity, estimated from these measurements, is dσbbÂŻÂŻÂŻ/dy||y|<0.5=83.1±3.5(stat.)±5.4(syst.)+12.3−3.2(extrap.)ÎŒb. The baryon-to-meson ratios are computed to investigate the hadronization mechanism of beauty quarks. The non-prompt Λ+c/D0 production ratio has a similar trend to the one measured for the promptly produced charmed particles and to the p/π+ and Λ/K0S ratios, suggesting a similar baryon-formation mechanism among light, strange, charm, and beauty hadrons. The pT-integrated non-prompt Λc/D0 ratio is found to be significantly higher than the one measured in e+e− collisions

    Production of Λ and K0S in jets in p–Pb collisions at √sNN = 5.02 TeV and pp collisions at √s = 7 TeV

    No full text
    The production of Λ baryons and K0S mesons (V0 particles) was measured in p-Pb collisions at sNN−−−√=5.02 TeV and pp collisions at s√=7 TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum (pT) in high multiplicity pp and p-Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-kT algorithm using charged particles. The production of strange particles associated with jets pchT,jet>10 and pchT,jet>20 GeV/c in p-Pb collisions, and with jet pchT,jet>10 GeV/c in pp collisions is reported as a function of pT. Its dependence on angular distance from the jet axis, R(V0,jet), for jets with pchT,jet>10 GeV/c in p-Pb collisions is reported as well. The pT-differential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the V0 particles in the underlying event is found to be larger than the density in the minimum bias events. The Λ/K0S ratio associated with jets in p-Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate pT often referred to as "baryon anomaly" in the inclusive measurements

    K∗^{*}(892)±^{\pm} resonance production in Pb−-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe production of K∗^*(892)±^\pm meson resonance is measured at midrapidity (∣y∣8|y|8 GeV/cc, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium

    Constraining hadronization mechanisms with Λ+c/D0 production ratios in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The production of prompt Λ+c baryons at midrapidity (|y|<0.5) was measured in central (0-10%) and mid-central (30-50%) Pb-Pb collisions at the center-of-mass energy per nucleon-nucleon pair sNN−−−√=5.02 TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach much lower transverse momentum (pT=1 GeV/c) with respect to previous measurements performed by the ALICE, STAR, and CMS Collaborations in nucleus-nucleus collisions, allowing for an extrapolation down to pT=0. The pT-differential Λ+c/D0 production ratio is enhanced with respect to the pp measurement for 4<pT<8 GeV/c by 3.7 standard deviations (σ), while the pT-integrated ratios are compatible within 1σ. The observed trend is similar to that observed in the strange sector for the Λ/K0S ratio. Model calculations including coalescence or statistical hadronization for charm-hadron formation are compared with the data
    • 

    corecore