663 research outputs found

    Magnetization plateaux and jumps in a class of frustrated ladders: A simple route to a complex behaviour

    Full text link
    We study the occurrence of plateaux and jumps in the magnetization curves of a class of frustrated ladders for which the Hamiltonian can be written in terms of the total spin of a rung. We argue on the basis of exact diagonalization of finite clusters that the ground state energy as a function of magnetization can be obtained as the minimum - with Maxwell constructions if necessary - of the energies of a small set of spin chains with mixed spins. This allows us to predict with very elementary methods the existence of plateaux and jumps in the magnetization curves in a large parameter range, and to provide very accurate estimates of these magnetization curves from exact or DMRG results for the relevant spin chains.Comment: 14 pages REVTeX, 7 PostScript figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; some references added and a few other minor change

    A Spin-1/2 Model for CsCuCl_3 in an External Magnetic Field

    Full text link
    CsCuCl_3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory is used mainly for three coupled chains which are also investigated numerically using the density-matrix renormalization group technique. We find that already the three-chain model gives rise to the plateau-like feature at one third of the saturation magnetization which is observed in magnetization experiments on CsCuCl_3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal axis, a jump is observed in the experimental magnetization curve in the region of again about one third of the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence for such a jump with the model in the appropriate parameter region.Comment: 13 pages LaTeX2e with EPJ macro package (included), 8 (e)ps figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; a few further explanations and one reference adde

    Low-temperature properties of the Hubbard model on highly frustrated one-dimensional lattices

    Full text link
    We consider the repulsive Hubbard model on three highly frustrated one-dimensional lattices -- sawtooth chain and two kagom\'{e} chains -- with completely dispersionless (flat) lowest single-electron bands. We construct the complete manifold of {\em exact many-electron} ground states at low electron fillings and calculate the degeneracy of these states. As a result, we obtain closed-form expressions for low-temperature thermodynamic quantities around a particular value of the chemical potential μ0\mu_0. We discuss specific features of thermodynamic quantities of these ground-state ensembles such as residual entropy, an extra low-temperature peak in the specific heat, and the existence of ferromagnetism and paramagnetism. We confirm our analytical results by comparison with exact diagonalization data for finite systems.Comment: 20 pages, 12 figures, 2 table

    Flat-Band Ferromagnetism as a Pauli-Correlated Percolation Problem

    Full text link
    We investigate the location and nature of the para-ferro transition of interacting electrons in dispersionless bands using the example of the Hubbard model on the Tasaki lattice. This case can be analyzed as a geometric site-percolation problem where different configurations appear with nontrivial weights. We provide a complete exact solution for the 1D case and develop a numerical algorithm for the 2D case. In two dimensions the paramagnetic phase persists beyond the uncorrelated percolation point, and the grand-canonical transition is via a first-order jump to an unsaturated ferromagnetic phase.Comment: 6 pages, 5 figure

    Adaptive Lanczos-vector method for dynamic properties within the density-matrix renormalization group

    Full text link
    Current widely-used approaches to calculate spectral functions using the density-matrix renormalization group in frequency space either necessarily include an artificial broadening (correction-vector method) or have limited resolution (time-domain density-matrix renormalization group with Fourier transform method). Here we propose an adaptive Lanczos-vector method to calculate the coefficients of a continued fraction expansion of the spectral function iteratively. We show that one can obtain a very accurate representation of the spectral function very efficiently, and that one can also directly extract the spectral weights and poles for the discrete system. As a test case, we study spinless fermions in one dimension and compare our approach to the correction vector method.Comment: 4 pages, 4 figures, accepted at Phys. Rev. B (RC

    Numerical study of magnetization plateaux in the spin-1/2 kagome Heisenberg antiferromagnet

    Get PDF
    We clarify the existence of several magnetization plateaux for the kagome S=1/2S=1/2 antiferromagnetic Heisenberg model in a magnetic field. Using approximate or exact localized magnon eigenstates, we are able to describe in a similar manner the plateau states that occur for magnetization per site m=1/3m=1/3, 5/95/9, and 7/97/9 of the saturation value. These results are confirmed using large-scale Exact Diagonalization on lattices up to 63 sites.Comment: 8 pages; minor changes; published versio

    Exact results for one dimensional stochastic cellular automata for different types of updates

    Full text link
    We study two common types of time-noncontinuous updates for one dimensional stochastic cellular automata with arbitrary nearest neighbor interactions and arbitrary open boundary conditions. We first construct the stationary states using the matrix product formalism. This construction then allows to prove a general connection between the stationary states which are produced by the two different types of updates. Using this connection, we derive explicit relations between the densities and correlation functions for these different stationary states.Comment: 7 pages, Late

    Bound states in weakly disordered spin ladders

    Full text link
    We study the appearance of bound states in the spin gap of spin-1/2 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation in the strong-coupling limit and compared with numerical results. Furthermore, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.Comment: 2 pages, 1 figure. Proceedings of SCES'04, to appear in Physica

    High field magnetisation of the frustrated one dimensional quantum antiferromagnet LiCuVO4

    Full text link
    We have investigated the high field magnetisation of the frustrated one dimensional compound LiCuVO4. In zero field, LiCuVO4 undergoes long range antiferromagnetic order at T_{N} ~ 2.5 K with a broad short range Schottky type anomaly due to one dimensional correlations in the specific heat at 32 K. Application of a magnetic field induces a rich phase diagram. An anomaly in the derivative of the magnetisation with respect to the applied magnetic field is seen at ~ 7.5 T with H ll c in the long range order phase. We investigated this in terms of a first experimental evidence of a middle field cusp singularity (MFCS). Our numerical DMRG results show that in the parameter range of LiCuVO4 as deduced by inelastic neutron scattering (INS), there exists no MFCS. The anomaly in the derivative of the magnetisation at ~ 7.5 T is therfore assigned to a change in the spin structure from the ab plane helix seen in zero field neutron diffraction.Comment: 7 pages, 4 figures, to appear as a special edition in J. Phys. Cond. Mat as part of the proceedings of the HFM2006 conference in Osaka, Japa
    corecore