325 research outputs found

    Graphene field-effect transistors based on boron nitride gate dielectrics

    Full text link
    Graphene field-effect transistors are fabricated utilizing single-crystal hexagonal boron nitride (h-BN), an insulating isomorph of graphene, as the gate dielectric. The devices exhibit mobility values exceeding 10,000 cm2/V-sec and current saturation down to 500 nm channel lengths with intrinsic transconductance values above 400 mS/mm. The work demonstrates the favorable properties of using h-BN as a gate dielectric for graphene FETs.Comment: 4 pages, 8 figure

    Sensitivity of the superconducting state in thin films

    Get PDF
    For more than two decades, there have been reports on an unexpected metallic state separating the established superconducting and insulating phases of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here, we show that for two very different thin-film superconductors, amorphous indium oxide and a single crystal of 2H-NbSe2, this metallic state can be eliminated by adequately filtering external radiation. Our results show that the appearance of temperature-independent, metallic-like transport at low temperatures is sufficiently described by the extreme sensitivity of these superconducting films to external perturbations. We relate this sensitivity to the theoretical observation that, in two dimensions, superconductivity is only marginally stable

    Electronic compressibility of layer polarized bilayer graphene

    Full text link
    We report on a capacitance study of dual gated bilayer graphene. The measured capacitance allows us to probe the electronic compressibility as a function of carrier density, temperature, and applied perpendicular electrical displacement D. As a band gap is induced with increasing D, the compressibility minimum at charge neutrality becomes deeper but remains finite, suggesting the presence of localized states within the energy gap. Temperature dependent capacitance measurements show that compressibility is sensitive to the intrinsic band gap. For large displacements, an additional peak appears in the compressibility as a function of density, corresponding to the presence of a 1-dimensional van Hove singularity (vHs) at the band edge arising from the quartic bilayer graphene band structure. For D > 0, the additional peak is observed only for electrons, while D < 0 the peak appears only for holes. This asymmetry that can be understood in terms of the finite interlayer separation and may be useful as a direct probe of the layer polarization

    Extreme Sensitivity of the Superconducting State in Thin Films

    Full text link
    All non-interacting two-dimensional electronic systems are expected to exhibit an insulating ground state. This conspicuous absence of the metallic phase has been challenged only in the case of low-disorder, low density, semiconducting systems where strong interactions dominate the electronic state. Unexpectedly, over the last two decades, there have been multiple reports on the observation of a state with metallic characteristics on a variety of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here we show that for two very different thin-film superconductors, amorphous indium-oxide and a single-crystal of 2H-NbSe2, this metallic state can be eliminated by filtering external radiation. Our results show that these superconducting films are extremely sensitive to external perturbations leading to the suppression of superconductivity and the appearance of temperature independent, metallic like, transport at low temperatures. We relate the extreme sensitivity to the theoretical observation that, in two-dimensions, superconductivity is only marginally stable.Comment: 10 pages, 6 figure

    On the tau-functions of the Degasperis-Procesi equation

    Full text link
    The DP equation is investigated from the point of view of determinant-pfaffian identities. The reciprocal link between the Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the CC_{\infty} two-dimensional Toda system is used to construct the N-soliton solution of the DP equation. The N-soliton solution of the DP equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations, the identities between determinants and pfaffians, and the τ\tau-functions of the DP equation are obtained from the pseudo 3-reduction of the CC_{\infty} two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and Theoretical, to be publishe

    Inverse Scattering Transform for the Camassa-Holm equation

    Get PDF
    An Inverse Scattering Method is developed for the Camassa-Holm equation. As an illustration of our approach the solutions corresponding to the reflectionless potentials are explicitly constructed in terms of the scattering data. The main difference with respect to the standard Inverse Scattering Transform lies in the fact that we have a weighted spectral problem. We therefore have to develop different asymptotic expansions.Comment: 17 pages, LaTe

    Relaxation of nonlinear oscillations in BCS superconductivity

    Full text link
    The diagonal case of the sl(2)sl(2) Richardson-Gaudin quantum pairing model \cite{Richardson1,Richardson2,Richardson3,Richardson4,Richardson5,Richardson6,G audin76} is known to be solvable as an Abel-Jacobi inversion problem \cite{SOV,Kuznetzov,Kuz1,Kuz2,Kuz3,Kuz4,Kuz5,YAKE04}. This is an isospectral (stationary) solution to a more general integrable hierarchy, in which the full time evolution can be written as isomonodromic deformations. Physically, the more general solution is appropriate when the single-particle electronic spectrum is subject to external perturbations. The asymptotic behavior of the nonlinear oscillations in the case of elliptic solutions is derived

    Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation

    Get PDF
    The Yablonskii-Vorob'ev polynomials yn(t)y_{n}(t), which are defined by a second order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painlev\'{e} equation (PIIP_{II}). Here we define two-variable polynomials Yn(t,h)Y_{n}(t,h) on a lattice with spacing hh, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h=0h=0. They also provide rational solutions for a particular discretisation of PIIP_{II}, namely the so called {\it alternate discrete} PIIP_{II}, and this connection leads to an expression in terms of the Umemura polynomials for the third Painlev\'{e} equation (PIIIP_{III}). It is shown that B\"{a}cklund transformation for the alternate discrete Painlev\'{e} equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete PIIP_{II}, which recovers Jimbo and Miwa's Lax pair for PIIP_{II} in the continuum limit h0h\to 0.Comment: 23 pages, IOP style. Title changed, and connection with Umemura polynomials adde

    Conductivity of graphene: How to distinguish between samples with short and long range scatterers

    Full text link
    Applying a quasiclassical equation to carriers in graphene we found a way how to distinguish between samples with the domination of short and long range scatterers from the conductivity measurements. The model proposed explains recent transport experiments with chemically doped as well as suspended graphene.Comment: 6 pages, 3 figures, some references have been corrected and revise

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure
    corecore