11 research outputs found

    A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China

    Get PDF
    We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra. These features suggest a sister-taxon relationship between L. exquisitus and T. mangas, which indicates the presence of a unique dromaeosaurid lineage in the Late Cretaceous of Asia. A number of cranial and dental features seen in L. exquisitus and T. mangas, and particularly some postcranial features of L. exquisitus, suggest that these two taxa are probably intermediate in systematic position between known basal and derived dromaeosaurids. The discovery of Linheraptor exquisitus is thus important for understanding the evolution of some salient features seen in the derived dromaeosaurids

    New models for the wing extension in pterosaurs

    Get PDF
    All powered flying animals have to face the same energetic problems: operating the wings during steady flight with muscles that require constant energy input and neural control to work. Accordingly the extant flying vertebrates have apparently found very similar solutions to parts of these issues - the biomechanical automatism built in their skeletal, muscular and connective tissue system. Based on these extant analogues (birds and bats) two new models are presented here for the mechanism of the distal wing extension in pterosaurs, an extinct group of flying vertebrates. The elongate fourth finger which solely supported their extensive flight membrane was a long lever arm that experienced significant loads and for which a reduction in muscle mass through automatisation would have been strongly beneficial. In the first model we hypothesize the presence of a propatagial ligament or ligamentous system which, as a result of the elbow extension, automatically performs and maintains the extension of the wing finger during flight and prohibits the hyperextension of the elbow. The second model has a co-operating bird-like propatagial ligamentous system and bat-like tendinous extensor muscle system on the forearm of the hypothetical pterosaur. Both models provide strong benefits to an animal with powered flight: (1) reduction of muscles and weight in the distal wing; (2) prevention of hyper extension of the elbow against drag; (3) automating wing extension and thereby reducing metabolic costs required to operate the pterosaurian locomotor apparatus. These models, although hypothetical, fit with the existing fossil evidence and lay down a basis for further biomechanical and/or aerodynamical investigations

    New information on scavenging and selective feeding behaviour of tyrannosaurids

    No full text
    Feeding traces for carnivorous theropod dinosaurs are typically rare but can provide important evidence of prey choice and mode of feeding. Here we report a humerus of the hadrosaurine Saurolophus which was heavily damaged from feeding attributed to the giant tyrannosaurine Tarbosaurus. The bone shows multiple bites made in three distinctive styles termed “punctures”, “drag marks” and “bite−and−drag marks”. The distribution of these bites suggest that the animal was actively selecting which biting style to use based on which part of the bone was being engaged. The lack of damage to the rest of the otherwise complete and articulated hadrosaur strongly implies that this was a scavenging event, the first reported for a tyrannosaurid, and not feeding at a kill site

    The ‘species recognition hypothesis’ does not explain the presence and evolution of exaggerated structures in non-avialan dinosaurs

    No full text
    The hypothesis that the exaggerated structures in various non-avialan dinosaurs (e.g. horns, crests, plates) primarily functioned in species recognition, allowing individuals of a species to recognize one another, is critically examined. While multifunctionality for many such structures is probable given extant analogues, invoking species recognition as the primary selective mechanism driving the evolution of such structures is problematic given the lack of evidence for this in extant species. Furthermore, some of the evidence presented does not support the hypothesis as claimed or is equivocal or erroneous. Suggestions that certain evolutionary patterns of diversification in these exaggerated structures are indicative of a role in species recognition are unreliable, as both a degree of phylogenetic directionality and of randomness are seen in extant species where similar structures function in sexual selection. Claims that an absence of sexual dimorphism in the exaggerated structures of non-avialan dinosaurs rule against a role in sexual selection ignores the possible existence of mutual sexual selection and is also sometimes limited in view of sample sizes. The suggestion that the existence of species recognition is supported by the presence of exaggerated structures in sympatric, closely related relatives is also erroneous because adorned dinosaur species sometimes exist in the absence of unadorned relatives. We conclude that species recognition was not the evolutionary mechanism most likely to be driving the appearance and persistence of exaggerated structures in non-avialan dinosaurs

    Osteology of the Late Cretaceous alvarezsauroid Linhenykus monodactylus from China and comments on alvarezsauroid biogeography

    No full text
    The alvarezsauroid theropod Linhenykus monodactylus from the Upper Cretaceous of Inner Mongolia, China is the first knownmonodactyl non−avian dinosaur, providing important information on the complex patterns of manual evolution seen in alvarezsauroids. Herewe provide a detailed description of the osteology of this taxon. Linhenykus shows a number of fea− tures that are transitional between parvicursorine and non−parvicursorine alvarezsauroids, but detailed comparisons also re− veal that some characters had a more complex distribution. We also use event−based tree−fitting to perform a quantitative analysis of alvarezsauroid biogeography incorporating several recently discovered taxa. The results suggest that there is no statistical support for previous biogeographic hypotheses that favour pure vicariance or pure dispersal scenarios as explana− tions for the distributions of alvarezsauroids across SouthAmerica, NorthAmerica andAsia. Instead, statistically significant biogeographic reconstructions suggest a dominant role for sympatric (or “within area”) events, combined with a mix of vicariance, dispersal and regional extinction. At present the alvarezsauroid data set is too small to completely resolve the biogeographic history of this group: future studies will need to create larger data sets that encompass additional clades
    corecore