1,458 research outputs found

    Centrifugal Modeling of a Pile Under Vertical Random Excitation

    Get PDF
    Data from the experimental modeling of a pile in a geotechnical centrifuge are compared with analytical results. The model pile was subjected to vertical random excitation with subsequent determination of the compliance function in the frequency domain. This compliance function was found to be consistent with theory. An absorbing boundary was used to minimize reflected wave energy from the centrifuge container boundaries

    Physics-Informed with Power-Enhanced Residual Network for Interpolation and Inverse Problems

    Full text link
    This paper introduces a novel neural network structure called the Power-Enhancing residual network, designed to improve interpolation capabilities for both smooth and non-smooth functions in 2D and 3D settings. By adding power terms to residual elements, the architecture boosts the network's expressive power. The study explores network depth, width, and optimization methods, showing the architecture's adaptability and performance advantages. Consistently, the results emphasize the exceptional accuracy of the proposed Power-Enhancing residual network, particularly for non-smooth functions. Real-world examples also confirm its superiority over plain neural network in terms of accuracy, convergence, and efficiency. The study also looks at the impact of deeper network. Moreover, the proposed architecture is also applied to solving the inverse Burgers' equation, demonstrating superior performance. In conclusion, the Power-Enhancing residual network offers a versatile solution that significantly enhances neural network capabilities. The codes implemented are available at: \url{https://github.com/CMMAi/ResNet_for_PINN}

    The SBC-Tree: An Index for Run-Length Compressed Sequences

    Get PDF
    Run-Length-Encoding (RLE) is a data compression technique that is used in various applications, e.g., biological sequence databases. multimedia: and facsimile transmission. One of the main challenges is how to operate, e.g., indexing: searching, and retriexral: on the compressed data without decompressing it. In t.his paper, we present the String &tree for _Compressed sequences; termed the SBC-tree, for indexing and searching RLE-compressed sequences of arbitrary length. The SBC-tree is a two-level index structure based on the well-knoxvn String B-tree and a 3-sided range query structure. The SBC-tree supports substring as \\re11 as prefix m,atching, and range search operations over RLE-compressed sequences. The SBC-tree has an optimal external-memory space complexity of O(N/B) pages, where N is the total length of the compressed sequences, and B is the disk page size. The insertion and deletion of all suffixes of a compressed sequence of length m taltes O(m logB(N + m)) I/O operations. Substring match,ing, pre,fix matching, and range search execute in an optimal O(log, N + F) I/O operations, where Ip is the length of the compressed query pattern and T is the query output size. Re present also two variants of the SBC-tree: the SBC-tree that is based on an R-tree instead of the 3-sided structure: and the one-level SBC-tree that does not use a two-dimensional index. These variants do not have provable worstcase theoret.ica1 bounds for search operations, but perform well in practice. The SBC-tree index is realized inside PostgreSQL in t,he context of a biological protein database application. Performance results illustrate that using the SBC-tree to index RLE-compressed sequences achieves up to an order of magnitude reduction in storage, up to 30 % reduction in 110s for the insertion operations, and retains the optimal search performance achieved by the St,ring B-tree over the uncompressed sequences.!I c 0,

    The genetic basis of onset age in schizophrenia: evidence and models

    Get PDF
    Schizophrenia is a heritable neurocognitive disorder affecting about 1% of the population, and usually has an onset age at around 21–25 in males and 25–30 in females. Recent advances in genetics have helped to identify many common and rare variants for the liability to schizophrenia. Earlier evidence appeared to suggest that younger onset age is associated with higher genetic liability to schizophrenia. Clinical longitudinal research also found that early and very-early onset schizophrenia are associated with poor clinical, neurocognitive, and functional profiles. A recent study reported a heritability of 0.33 for schizophrenia onset age, but the genetic basis of this trait in schizophrenia remains elusive. In the pre-Genome-Wide Association Study (GWAS) era, genetic loci found to be associated with onset age were seldom replicated. In the post-Genome-Wide Association Study era, new conceptual frameworks are needed to clarify the role of onset age in genetic research in schizophrenia, and to identify its genetic basis. In this review, we first discussed the potential of onset age as a characterizing/subtyping feature for psychosis, and as an important phenotypic dimension of schizophrenia. Second, we reviewed the methods, samples, findings and limitations of previous genetic research on onset age in schizophrenia. Third, we discussed a potential conceptual framework for studying the genetic basis of onset age, as well as the concepts of susceptibility, modifier, and “mixed” genes. Fourth, we discussed the limitations of this review. Lastly, we discussed the potential clinical implications for genetic research of onset age of schizophrenia, and how future research can unveil the potential mechanisms for this trait

    Optimal waist-to-height ratio values for cardiometabolic risk screening in an ethnically diverse sample of South African urban and rural school boys and girls

    Get PDF
    BACKGROUND: The proposed waist-to-height ratio (WHtR) cut-off of 0.5 is less optimal for cardiometabolic risk screening in children in many settings. The purpose of this study was to determine the optimal WHtR for children from South Africa, and investigate variations by gender, ethnicity and residence in the achieved value. METHODS: Metabolic syndrome (MetS) components were measured in 1272 randomly selected learners, aged 10-16 years, comprising of 446 black Africans, 696 mixed-ancestry and 130 Caucasians. The Youden's index and the closest-top-left (CTL) point approaches were used to derive WHtR cut-offs for diagnosing any two MetS components, excluding the waist circumference. RESULTS: The two approaches yielded similar cut-off in girls, 0.465 (sensitivity 50.0, specificity 69.5), but two different values in boys, 0.455 (42.9, 88.4) and 0.425 (60.3, 67.7) based on the Youden's index and the CTL point, respectively. Furthermore, WHtR cut-off values derived differed substantially amongst the regions and ethnic groups investigated, whereby the highest cut-off was observed in semi-rural and white children, respectively, Youden's index0.505 (31.6, 87.1) and CTL point 0.475 (44.4, 75.9). CONCLUSION: The WHtR cut-off of 0.5 is less accurate for screening cardiovascular risk in South African children. The optimal value in this setting is likely gender and ethnicity-specific and sensitive to urbanization

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe

    Nonlinear Modulation of Multi-Dimensional Lattice Waves

    Full text link
    The equations governing weakly nonlinear modulations of NN-dimensional lattices are considered using a quasi-discrete multiple-scale approach. It is found that the evolution of a short wave packet for a lattice system with cubic and quartic interatomic potentials is governed by generalized Davey-Stewartson (GDS) equations, which include mean motion induced by the oscillatory wave packet through cubic interatomic interaction. The GDS equations derived here are more general than those known in the theory of water waves because of the anisotropy inherent in lattices. Generalized Kadomtsev-Petviashvili equations describing the evolution of long wavelength acoustic modes in two and three dimensional lattices are also presented. Then the modulational instability of a NN-dimensional Stokes lattice wave is discussed based on the NN-dimensional GDS equations obtained. Finally, the one- and two-soliton solutions of two-dimensional GDS equations are provided by means of Hirota's bilinear transformation method.Comment: Submitted to PR

    Importance of alkyl chain-length on the self-assembly of new Ni(qdt) 2 complexes and charge transport properties

    Get PDF
    A series of ionic complexes composed with ([Ni(qdt)2]2−) and alkyl substituted asymmetric viologen derivatives (AV+) as cations have been synthesized and characterized. A slight change in the length of the alkyl chain of AV+ alters the cation–anion packing and leads to different charge transport properties of these complexes. Here, we establish a structure–property relationship of Ni(qdt)2 complexes by structurally modifying the cations

    Optoacoustic solitons in Bragg gratings

    Full text link
    Optical gap solitons, which exist due to a balance of nonlinearity and dispersion due to a Bragg grating, can couple to acoustic waves through electrostriction. This gives rise to a new species of ``gap-acoustic'' solitons (GASs), for which we find exact analytic solutions. The GAS consists of an optical pulse similar to the optical gap soliton, dressed by an accompanying phonon pulse. Close to the speed of sound, the phonon component is large. In subsonic (supersonic) solitons, the phonon pulse is a positive (negative) density variation. Coupling to the acoustic field damps the solitons' oscillatory instability, and gives rise to a distinct instability for supersonic solitons, which may make the GAS decelerate and change direction, ultimately making the soliton subsonic.Comment: 5 pages, 3 figure
    corecore