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A b s t r a c t  

Run-Length-Encoding (RLE) is a data  compression technique that is 
used in various applications, e.g., biological sequence databases. multi- 
media: and facsimile transmission. One of the  main challenges is how t o  
operate, e.g., indexing: searching, and retriexral: on the compressed data  
without decompressing it. In t.his paper, we present the String &tree 
for _Compressed sequences; termed the  SBC-tree, for indexing and search- 
ing RLE-compressed sequences of arbitrary length. The SBC-tree is a 
two-level index structure based on the  well-knoxvn String B-tree and a 
3-sided range query structure. The  SBC-tree supports substring as \\re11 
as prefix m,atching, and range search operations over RLE-compressed se- 
quences. The  SBC-tree has an optimal external-memory space complexity 
of O ( N / B )  pages, where N is the total length of the  compressed sequences, 
and B is the  disk page size. The  insertion and deletion of all suffixes of 
a compressed sequence of length m taltes O ( m  logB(N + m)) I /O opera- 
tions. Substring match,ing, pre,fix matching, and range search execute in 
an optimal O(log, N + F) I /O operations, where Ip is the length of 
the compressed query pattern and T is the query output size. R e  present 
also two variants of the SBC-tree: the SBC-tree tha t  is based on an R-tree 
instead of the  3-sided structure: and the  one-level SBC-tree that does not 
use a two-dimensional index. These variants do not have provable worst- 
case theoret.ica1 bounds for search operations, but  perform well in practice. 
The  SBC-tree index is realized inside PostgreSQL in t,he context of a bi- 
ological protein database application. Performance results illustrate that 
using the  SBC-tree t o  index RLE-compressed sequences achieves u p  t o  
a n  order of magnitude reduction in storage, up  t o  30% reduction in 110s 
for the insertion operations, and retains the optimal search performance 
achieved by the  St,ring B-tree over the uncompressed sequences. 
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Abstract

Run-Length-Encoding (RLE) is a data compression technique that is
used in various applications, e.g., biological sequence databases, multi
media, and facsimile transmission. One of the main chaUenges is how to
operate, e.g., indexing, searching, and retrieval, on the compressed data
without decompressing it. In this paper, we present the String J2--tree
for .Qompressed sequences, termed the SBC-tree, for indexing and search
ing RLE-compressed sequences of arbitrary length. The SBC-tree is a
two-level index structure based on the well-known String B-tree and a
3-sided range query structure. The SBC-tree supports substring as well
as prefix matching, and range search operations over RLE-compressed se
quences. The SBC-tree has an optimal external-memory space complexity
of O(N/ B) pages, where N is the total length of the compressed sequences,
and B is the disk page size. The insertion and deletion of all suffixes of
a compressed sequence of length m takes O(mlogB(N + m)) I/0 opera
tions. Substring matching, prefix matching, and range search execute in
an optimal O(logB N + Ipl';T) I/0 operations, where Ipl is the length of
the compressed query pattern and T is the query output size. \Ve present
also two variants of the SBC-tree: the SBC-tree that is based on an R-tree
instead of the 3-sicled structure, and the one-level SBC-tree that does not
use a two-dimensional index. These variants do not have provable worst
case theoretical bounds for search operations, but perform weJl in practice.
The SBC-tree index is realized inside PostgreSQL in the context of a bi
ological protein database application. Performance results illustrate that
using the SBC-tree to index RLE-compressed sequences achieves up to
an order of magnitude reduction in storage, up to 30% reduction in I/Os
for the insertion operations, and retains the optimal search performance
achieved by the St.ring B-tree over the uncompressed sequences.
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1 Introduction 

Current databases store inassive anlouilts of data, especia.lly in text a.nd se- 
quence formats. e.g.. biological sequences. text books, medical record, multi- 
media. files, digital libraries: et,c. Wibh such massive an~ouilts of data,  data  
coinpressioil techniques, e.g., [15, 24: 36, 42, 48, 491: gain sigilificailt importa.nce 
t o  achieve coinpa.ct data representation. Run-Length-Encoding (RLE) [24] is 
a conlpression technique t.ha.t replaces the consecutive repeats of an element x 
by one occurreilce of x along with x's frequeilcy: i.e., the repeat, length. For ex- 
ample, a sequence S = A A A A E E E B B B B B B B  has an RLE-compressed form 
S' = A4E3B7. RLE is used in various applicat.ions, e.g., biological sequence 
databases, multimedia., and facsimile transmission. 

One of the main challeilges is 110~: t.o operate, e.g., indexing, searching: and 
ret,rieval: on the compressed da.ta without decoinpressing it. The goal is to  
achieve search perforinailce over the compressed data that  is better than or 
a t  least coinpetitive with tlle search perforinailce over the uncompressed data.  
Several in-memory algorithins have been prol~osed t o  search various formats of 
conlpressed data, e.g.. 11: 2, 6, 13, 14, 20. 23: 26: 32: 4:I.l. However, none of t.he 
proposed algorithms address the problein of iildexiilg and searching compressed 
data using external memory techiliques [46]. 

In t.llis paper, n7e propose the SBC-tree ($tring B-tree for Compressed se- 
quences) for indexing and searclliilg RLE-conipressed sequences of arbitrary 
lengt,h. The SBC-tree is a. two-level index structure as illustrated in Figure I (a).  
The first level is a. inodified version of the String B-t,ree proposed in [19], and 
t,he secoild level is the optiinuln 3-sided range query structure proposed in [8]. 
The 3-sided structure is built oil top of tlle leaf entries of the modified String 
B-tree. For each suffix k in sequence S inserted into the modified String B-tree. 
a. poiilt coiltaiiliilg k's preceding character in S and a tag iildicat.iilg k's positioil 
in the String B-tree is inserted into the 3-sided structure. The link that. relates 
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Figure 1: The SBC-tree design

1 Introduction

Current databases store massive amounts of data, especially in text and se
quence formats, e.g., biological sequences, text books, medical record, multi
media files, digital libraries, etc. 'iVith such massive amounts of data, data
compression techniques, e.g., [15,24,36,42,48,49], gain significant importance
to achieve compact data representation. Run-Length-Encoding (RLE) [24] is
a compression technique that replaces the consecutive repeats of an element x
by one occurrence of x along with x's frequency, i.e., the repeat length. For ex
ample, a sequence 5 = AAAAEEEBBBBBBB has an RLE-compressed form
51 = A4E3B7. RLE is used in various applications, e.g., biological sequence
databases, multimedia, and facsimile transmission.

One of the main challenges is how to operate, e.g., indexing, searching, and
retrievaL on the compressed data without decompressing it. The goal is to
achieve search performance over the compressed data that is better than or
at least competitive with the search performance over the uncompressed data.
Several in-memory algorithms have been proposed to search various formats of
compressed data, e.g., [1, 2, 6, 13, 14,20, 23, 26, 32, 4:1]. However, none of the
proposed algorithms address the problem of indexing and searching compressed
data using external memory techniques [46].

In this paper, we propose the SBC-tree (String B.-tree for ,Qompressed se
quences) for indexing and searching RLE-compressed sequences of arbitrary
length. The SBC-tree is a two-level index structure as illustrated in Figure l(a).
The first level is a modified version of the String B-tree proposed in [19], and
the second level is the optimum 3-sided range query structure proposed in [8].
The 3-sided structure is built Oll top of the leaf entries of the modified String
B-tree. For each suffix k in sequence 5 inserted into the modified String B-tree,
a point containing k's preceding character in 5 and a tag indicating k's position
in the String B-tree is inserted into the 3-sided structure. The link that relates
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each suffix in the modified String B-tree to  a point in the 3-sided st,ructure is 
the tag value. 

The SBC-tree supports su.bstring as well as prefix m.atching and rnn.ge search, 
queries over RLE-compressed sequences. A query over the SBC-tree is ansa~ered 
in two steps (See Figure l ( b ) ) .  I11 the first step, the SBC-tree first level, i.e., 
the String B-tree. deterinines a range. specified by two tag values m.in-tag and 
max-tag, that contains a superset of the query a,nswer. This range is mapped in 
the second step into a two-dimensional range query over the SBC-tree second 
level to  retrieve only the required answer set. 

Uie formalize our problenl as follox~rs. Given a set of I< RLE-compressed 
sequences A = {Sl ,  S2. ...: SKI. 1vl;here Si is a sequence of length IZ in the forin 
Si = 'xlfl  5 2 f 2  ... x,f,,'. x j  is a character in the alphabet. C: and f j  'j 1 
is the frequency of x j .  14ie call x j  f, an RLE-ch,aracter. Sequence Sf has IZ 

RLE-su,fixes: i.e.. RLE-Suffixes($) = {x, f j  xj+l fj+l ... x, f, I 1 5 j < 72).  

The length of the decoinpressed sequence of Si is the sum of the character 
frequencies forming Si. That  is. Idecoi?zpressed(S~)l = Cyzl fj: which can be 
much larger than 1%. The decompressed sequence of Si has C;=, .fj suffixes. The 
11 RLE-suffixes of S, are a subset of the total C;=, f j  suffixes. The reinaining 
C>, f j  - n suffixes are called im,plicit-su,fizes, as they are not stored explicitly 
among the RLE-suffixes. Using t,he proposed SBC-tree, we achieve the following: 
(1) store the sequences in their compressed form: (2) index only the RLE-suffixes 
of the RLE-compressed sequences, i.e.. index n RLE-suffixes instead of C;=, f j  
suffixes! and (3) efficiently anslver pattern matching queries over t,he stored 
sequences. 

The SBC-tree has a.n optinla1 external-memory space complexity of O(M/B) 
pages, where N is the total length of the conlpressed sequences and B is the disk 
page size. The insertion and deletion of all suffixes of a. compressed sequence of 
length m takes O(7nlogB(N + 711)) amortized, and worst-case I/O operations, 
respectively. Su.bstring m.atchin,g, preft?: m.atch.in.g, and range search execute in 
an optimal O(logB N + w) I /O operations, where Ipl is the length of t,he 
RLE-compressed query pattern and T is the query output size. 

We also present tu7o variants of the SBC-tree: the SBC-tree that is based on 
an R-tree instead of the 3-sided structure: and the one-level SBC-tree that  does 
not use a two-diinensional index. These variants do not have provable nlorst-case 
theoretical bounds for search operations, but perform well in practice. 

The coiltributions of this paper are sumnlarized as follows: 

1. M7e present an index structure: ternled t.he SBC-tree, for indexing and 
searching RLE-compressed sequences. The SBC-t,ree is realized inside 
Post,greSQL. 

2. The SBC-tree has provable worst-case optinla1 theoretical bouilds for the 
external-inelllory space requirements. and search operations. 

3. The experimelltal results illustrate that using the SBC-tree t o  index RLE- 
compressed sequences achieves up to  an order of inagnitude reduction in 

each suffix in the modified String B-tree to a point in the 3-sided structure is
the tag value.

The SBC-tree supports sv,bstring as well as prefix matching and mnge search
queries over RLE-compressed sequences. A query over the SBC-tree is ans\vered
in two steps (See Figure 1(b)). In the first step, the SBC-tree first level, i.e.,
the String B-tree; determines a range; specified by two tag values min_tag and
max_tag, that contains a superset of the query answer. This range is mapped in
the second step into a two-dimensional range query over the SBC-tree second
level to retrieve only the required answer set.

'Ve formalize our problem as follows. Given a set of ]{ RLE-compressed
sequences 6. = {51; 52; ... , 5K }: where 5 i is a sequence of length n in the form
5 i = 'XI!I x2fz ... Xn fn;: Xj is a character in the alphabet I:: and jj ::::: 1
is the frequency of Xj' '\ie call Xjj) an RLE-chamcter. Sequence 5, has n
RLE-sv,ffixes; i.e.; RLE-Suffixes(5,) = {xJfj xHI!HI ... xnfn I 1 .:::: j .:::: n}.
The length of the decompressed sequence of 5, is the sum of the character
frequencies forming 5,. That is: Idecompressed(5,) I = 'L.?=I!J: which can be
much larger than n. The decompressed sequence of 5, has 'L.?=I Ij suffixes. The
n RLE-suffixes of 5, are a subset of the total 'L.?= I Ij suffixes. The remaining
'L.?= I Ij - 11, suffixes are called implicit-sv,ffi,Yes; as they are not stored explicitly
among the RLE-suffixes. Using the proposed SBC-tree; we achieve the following:
(1) store the sequences in their compressed form; (2) index only the RLE-suffixes
ofthe RLE-compressed sequences: i.e.; index n RLE-suffixes instead of 'L.7=1 !J
suffixes; and (3) efficiently ans\ver pattern matching queries over the stored
sequences.

The SBC-tree has an optimal external-memory space complexity of O(N/ B)
pages, where N is the total length of the compressed sequences and B is the disk
page size, The insertion and deletion of all suffixes of a compressed sequence of
length m takes O(mlogB(N + m)) amortized, and worst-case I/O operations;
respectively. 5v,bstTing matching; prefix matching; and mnge search execute in
an optimal O(logB N + IpllV) I/O operations; where Ipl is the length of the
RLE-compressed query pattern and T is the query output size.

'Ve also present two variants of the SBC-tree: the SBC-tree that is based on
an R-tree instead of the 3-sided structure: and the one-level SBC-tree that does
not use a two-dimensional index. These variants do not have provable worst-case
theoretical bounds for search operations: but perform well in practice.

The contributions of this paper are summarized as follows:

1. We present an index structure; termed the SBC-tree; for indexing and
searching RLE-compressed sequences. The SBC-tree is realized inside
PostgreSQL.

2. The SBC-tree has provable worst-case optimal theoretical bounds for the
external-memory space requirements, and search operations.

3. The experimental results illustrate that using the SBC-tree to index RLE
compressed sequences achieves up to an order of magnitude reduction in
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Figure 2: (a) Strings on disk, (b) The String B-tree for all suffixes: (c) The 
Patricia. trie inside one node. 

storage. up to 30% reduction in 110s for the insertion operations; and 
retains the optinla1 search performance achieved bj- the String R-tree over 
the unconlpressed sequences. 

4. To the best of our knowledge, this paper is the first to address indexing 
compressed data in external memory. 

The rest of the paper is organized as follows: I11 Section 2: we discuss the 
related ivork. 111 Section 3: me present the componellt substructures t,hat make 
the SBC-t.ree, namely: tlle modified String B-tree and the 3-sided range query 
st.ructure. We present t,he SBC-tree structure along n;ith its update and search 
algorithnls in Sections 4 and 5. The theoret.ica1 analysis and experilnental results 
of the SBC-tree are presented in Sections 6: and 7. respectively. Section 8 
cont,ains concludi~lg remarks. 

2 Related Work 

The concept of searcllillg conlpressed data was introduced in 15. 441. Based 
on this concept. several in-memory algorithms have been proposed to search 
various formats of colllpiessed data. Algorithins for searching RLE-coillpressed 
sequences include substring nlatching 13. 4. 441. approximate pattern match- 
Ing [32]. edit distance [7. 141. and longest conllno~l subsequellce [G. 231. Al- 
gorithms ovel other colnpressioll schenles include seaiching Lempel-Ziv com- 
pressed data [2. 381. searching antidictionaries compressed text [41]. and search- 
ing Burl 0ws-\4~1leeler trailsform (BWT) compressed data 1131. For applications 

· ..~:----_ .._----~~;-_ ... _------~-.=i

Ib)

I :'0 .1.j:- 6 i 8 y 10 II I:! t.' 14 IS t6 17 HI, lY 20 :1 ~:' :::.':::-1 ,~ :::/1 :::7 :::1( :Y .'0

r;;-I i Id I a II I" Im I a II III eI" IuIaII tel cIa IripJilil.il1llil
,J .,: ,1.1 -'-I YO" .16 .\1 .18 .W -10 -II 42 -0 44 -IS -16 -11 -1M -1y :"0 :"1 :-::: 5.1 ."-1 :":" ~f, :":

laillilals.aliltlelnld.clall.alcli Id.ulalll'M
(a)

Figure 2: (a) Strings on disk, (b) The String B-tree for all suffixes, (c) The
Patricia trie inside one node.

storage, up to 30% reduction in I/Os for the insertion operations, and
retains the optimal search performance achieved by the String B-tree over
the uncompressed sequences.

4. To the best of our knowledge, this paper is the first to address indexing
compressed data in external memory.

The rest of the paper is organized as follows: In Section 2, we discuss the
related work. In Section 3, we present the component substructures that make
the SBC-tree, namely, the modified String B-tree and the 3-sided range query
structure. \Ve present the SBC-tree structure along with its update and search
algorithms in Sections 4 and 5. The theoretical analysis and experimental results
of the SBC-tree are presented in Sections 6, and 7, respectively. Section 8
contains concluding remarks.

2 Related Work

The concept of searching compressed data was introduced in [5, 44]. Based
on this concept, several in-memory algorithms have been proposed to search
various formats of compressed data. Algorithms for searching RLE-compressed
sequences include substring matching [3, 4, 44]' approximate pattern match
ing [32], edit distance [7, 14]' and longest common subsequence [6, 23]. Al
gorithms over other compression schemes include searching Lempel-Ziv com
pressed data [2, 38], searching antidictionaries compressed text [41], and search
ing Burrows-\Vheeler transform (BWT) compressed data [13]. For applications
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such a.s entropy coinpressed t,ext,, the encoding scheme is complex. and lleilce the 
search mechanisms and compression formats have to be carefully engineered. For 
this purpose, several in-memory pattern matching data. structures are proposed 
that. are based on Burron~s Wheeler ~ansform(B1YT) 1201 a.nd Coinpressed Suf- 
fix Arra.ys(CSA) 125: 261. However, indexiilg and searchiag compressed data in 
external nlemory is more challenging: and no external memory structures anal- 
ogous to the structures a.bove exist.. 

Rega.rdless of the compression technique used, conlpressed sequences are 
usually treated as st,ring sequences. Therefore, indexing colnpressed sequences 
is closely t.ied to text a.nd sequence indexing. A ]nodel for sequence databases: 
called SEQ: is proposed in [40]. SEQ inodels different types of sequence data and 
defines a set of operators to query the sequences. A data structure for indexing 
numeric sequences is proposed in (181: where sequeilces are mapped into rect- 
angles and indexed using multidin~el~sional access methods. Several well-ki1on.n 
index structures for text indexing h a ~ e  been proposed. These sti-uctul.es include 
suffix trees [27, 34: 471, suffix binary search trees (311, suffix arrays 121: 2'7, 331, 
inverted files 1391: tries 122, 371, B-trees 19. 161. and the prefix B-tree [lo]. Sev- 
eral variants of these structures h a ~ e  been proposed to index efficieatly strings 
of nlll3ounded length. The persistent suffix trees have been proposed in 112. 301. 
A buffer nlai~agement strategy for a practical collst,ructioil of suffix t,rees has 
been proposed in 1431. An external memory structure for suffix arrays in a forin 
of B-tree is tlle Sti-ing B-tree (191. The String B-tree is a coinbination of the 
B-tree and the Patricia trie that is used for 110-efficient searching on strings of 
arbitra.ry length. 

Using existing text indexing data st.ructures t,o index RLE-compressed se- 
quences is not straightforward. Tlle reason is that the structure a.nd search 
mechanisms of the existing indexes are based on storing all suffixes of tlle 
underlying sequences, which is not the case in indexing the RLE-com~~ressed 
sequences, where the indexed RLE-suffixes are only a sinall subset of the se- 
quences' t.ota.1 suffixes. The challenge is how to efficiently ans\ver pattern match- 
ing queries: e.g., substring m.a.tch.in.g. prefix m.a.tch.in.g, and ran.ge search., wliile 
indexing only a. small subset. of the suffixes. 

One of the SBC-tree applications is indexing protein secondary structure 
sequences. Protein secondary structure sequences can be highly compressed 
using RLE coinpression technique. Indexing and searching protein secondarj~ 
structure sequences is addressed in 1291. where a 11e137 query language and a set of 
algorithms a.re proposed to search protein sequences. The algorithms pl-oposed 
in 1291 a,re for indexing and searching tlle ullcoinpressed sequences forinat. 

3 SBC-Tree Component Structures 

I11 this section, ire present the data stiuctures that n-e use to construct the 
SBC-tree. I11 Section 3.1. 11-e describe the String B-tree that is the bas~s for the 
first level of the SBC-tree. and in Section 3.2. we describe the 3-sided structure 
that is the basis for the secoild level of the SBC-tree. 

such as entropy compressed text, the encoding scheme is complex. and hence the
search mechanisms and compression formats have to be carefully engineered. For
this purpose, several in-memory pattern matching data structures are proposed
that are based on Burrows \Vheeler Transform(B\VT) [20] and Compressed Suf~

fix Arrays(CSA) [25, 26]. However, indexing and searching compressed data in
external memory is more challenging, and no external memory structures anal
ogous to the structures above exist.

Regardless of the compression technique used, compressed sequences are
usually treated as string sequences. Therefore, indexing compressed sequences
is closely tied to text and sequence indexing. A model for sequence databases,
called SEQ, is proposed in [40]. SEQ models different types of sequence data and
defines a set of operators to query the sequences. A data structure for indexing
numeric sequences is proposed in [18], ,,,here sequences are mapped into rect
angles and indexed using multidimensional access methods. Several well-known
index structures for text indexing have been proposed. These structures include
suffix trees [27,34,47], suffix binary search trees [31], suffix arrays [21, 27, 33],
inverted files [39], tries [22,37], B-trees [9, 16], and the prefix B-tree [10]. Sev
eral variants of these structures have been proposed to index efficiently strings
of 1!libounded length. The persistent suffix trees have been proposed in [12. 30].
A buffer management strategy for a practical construction of suffix trees has
been proposed in [43]. An external memory structure for suffix arrays in a form
of B-tree is the String B-tree [19]. The String B-tree is a combination of the
B-tree and the Patricia trie that is used for I/O-efficient searching on strings of
arbitrary length.

Using existing text indexing data structures to index RLE-compressed se
quences is not straightforward. The reason is that the structure and search
mechanisms of the existing indexes are based on storing all suffixes of the
underlying sequences, which is not the case in indexing the RLE-compressed
sequences, where the indexed RLE-suffixes are only a small subset of the se
quences' total suffixes. The challenge is how to efficiently ans\ver pattern match
ing queries, e.g., S1Lbstring matching, prefix matching, and range search, while
indexing only a small subset of the suffixes.

One of the SBC-tree applications is indexing protein secondary structure
sequences. Protein secondary structure sequences can be highly compressed
using RLE compression technique. Indexing and searching protein secondary
structure sequences is addressed in [29]. where a new query language and a set of
algorithms are proposed to search protein sequences. The algorithms proposed
in [29] are for indexing and searching the uncompressed sequences format.

3 SBC-Tree Component Structures

In this section, we present the data structures that we use to construct the
SBC-tree. In Section 3.1, we describe the String B-tree that is the basis for the
first level of the SBC-tree, and in Section 3.2, we describe the 3-sided structure
that is the basis for the second level of the SBC-tree.
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3.1 The String B-tree 

The String B-tree [19] is a data structure for indexing strings of arbitrary length, 
where the index nodes store the strings' logical keys instead of the striilgs them- 
selves. A string logical key is the start position of the string 011 disk. Suffixes of a 
given string have different logical keys depending on the suffixes' start positions 
in the string. The logical keys are sorted inside the String B-tree according to 
the lexicographic order of the corresponding suffixes (See Figure 2). 

The String B-tree is a conlbiilat~ioil of the B-tree [16] and the Patricia t rie [37]. 
where the eiltries inside each B-tree node are organized in a Patricia trie struc- 
t.ure instea.d of a sequential array (See Figure 2(c)). The goal of'tlle Patricia trie 
is to  avoid the logarithmic search inside each B-tree node. The reason is that 
each comparison against an index key requires performing one I /O to retrieve 
the key data, from the disk. Using the Patricia trie, \ve call avoid the logarithmic 
search and perforin only one I /O per B-tree node instead of log2 n I/Os. where 11 

is the number of eiltries in the B-tree node. For example, consider searching for 
pattern "t1a.s" in the node highlighted in Figure 2(c). If the keys illside the node 
are stored sequent,ially: then the binary search im~olves three conlparisons vi th  
logical keys 26, 55, and 32, \\;hich requires tllree 110s to get the keys' data. In 
contrast, searching the Patricia trie (Figure 2(c)) is performed bj- follo~ving the 
branching character 1 followed by a to  reach logical key 32. Then we perform one 
I /O to get the data corresponding to this logical key. The exact location of the 
searched pattern inside the node call then be specified based on the comparison 
between the pattern and the retrieved key data without further 110s. 

In Figure 2: we illustrate the String B-tree for a set of strings. Tlle positions 
of the strings on disk a.re presented in Figure 2(a). The leaf eiltries of the St.ring 
B-tree contain the logical keys of a'll suffixes ordered in lexicographic order from 
left to  right. The right-most key in each node propagat,es to the parent node 
(Figure 2(b)).  The node highlighted in Figure 2(c) contaiils a Patricia trie for 
substrings, "te" : "tend" : "tent". "tenuate" : "tl" and "t,las" . Each Patricia trie 
node stores the position at which the substrings under the node's subtree first 
differ along with the brailclling characters. For example, the first position a.t, 
which the strings illustrated in Figure 2(c) differ is position 1 (assuming the 
start position is 0): and the branching characters are e and I .  

To support efficiently tlle insertion of the strings' suffixes. the String B-tree 
maint.ains two types of auxiliary pointers. The st.andard parent poin.ter defined 
for each node: and the succ poin.ter defined for each k e ~ -  in the index. Tlle succ 
pointer of the key correspoildiilg to  suffix k in string S poii1t.s to the index node 
coiltainiilg the key correspoildiilg to suffix k + 1 in S .  The succ pointer of the 
last suffix in a string poiilts t,o itself. Using such auxiliary pointers. \ve perform 
a root-to-leaf path traversal in the index t,ree only for inserting the first suffix 
in each string. Then all the succeediilg suffixes are inserted by follo\ving the 
auxiliary pointers. 

Searching the String B-tree is done by performing root-to-leaf path traversals 
to  locate the first and last keys satisfying the query. All the keys between t,he 
first and last keys are the query answer. For example. in Figure 2: substrin.g 

3.1 The String B-tree

The String B-tree [19] is a data structure for indexing strings of arbitrary length,
where the index nodes store the strings' logical keys instead of the strings them
selves. A string logical key is the start position of the string on disk. Suffixes of a
given string have different logical keys depending on the suffixes' start positions
in the string. The logical keys are sorted inside the String B-tree according to
the lexicographic order of the corresponding suffixes (See Figure 2).

The String B-tree is a combination ofthe B-tree [16] and the Patricia trie [37].
where the entries inside each B-tree node are organized in a Patricia trie struc
ture instead of a sequential alTay (See Figure 2(c)). The goal ofthe Patricia trie
is to avoid the logarithmic search inside each B-tree node. The reason is that
each comparison against an index key requires performing one I/O to retrieve
the key data from the disk. Using the Patricia trie, we can avoid the logarithmic
search and perform only one I/O per B-tree node instead of log2 n 1/0s. where n
is the number of entries in the B-tree node. For example, consider searching for
pattern "tlas" in the node highlighted in Figure 2(c). If the keys inside the node
are stored sequentially, then the binary search involves three comparisons with
logical keys 26, 55, and 32, which requires three 1/0s to get the keys' data. In
contrast, searching the Patricia trie (Figure 2(c)) is performed by following the
branching character l followed by a to reach logical key 32. Then we perform one
I/O to get the data corresponding to this logical key. The exact location of the
searched pattern inside the node can then be specified based on the comparison
between the pattern and the retrieved key data without further 1/0s.

In Figure 2, we illustrate the String B-tree for a set of strings. The positions
of the strings on disk are presented in Figure 2(a). The leaf entries ofthe String
B-tree contain the logical keys of all suffixes ordered in lexicographic order from
left to right. The right-most ke:y in each node propagates to the parent node
(Figure 2(b)). The node highlighted in Figure 2(c) contains a Patricia trie for
substrings, "te", "tend", "tent", "tenuate", "tY, and "tlas". Each Patricia trie
node stores the position at which the substrings under the node's subtree first
differ along with the branching characters. For example, the first position at
which the strings illustrated in Figure 2(c) differ is position 1 (assuming the
start position is 0), and the branching characters are e and [.

To support efficiently the insertion of the strings' suffixes, the String B-tree
maintains two types of auxiliary pointers. The standard parent pointer defined
for each node, and the succ pointer defined for each key in the index. The succ
pointer of the key corresponding to suffix k in string S points to the index node
containing the key corresponding to suffix k + 1 in S. The succ pointer of the
last suffix in a string points to itself. Using such auxiliary pointers, we perform
a root-to-Ieaf path traversal in the index tree only for inserting the first suffix
in each string. Then all the succeeding suffixes are inserted by following the
auxiliary pointers.

Searching the String B-tree is done by performing root- to-leaf path traversals
to locate the first and last keys satisfying the query. All the keys between the
first and last keys are the query answer. For example, in Figure 2, substring
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Query answer 

b l  
\:I 

a1 a2 

Figure 3: 3-sided querJ- (01. a2. 01) 

searching for pattern p = "en" proceeds b!; perforniing a root-to-leaf path to  
locate the 1exicogra1)hically first suffix containing p. \\-hich is the sliffix starting 
a t  position 40 on the disk. Ailother root-to-leaf pat11 is perforllled to  locate the 
1exicographica.lly last suffix containing p ,  u~hich is the suffix starting at l~osition 
13 on the disk. All suffixes inbetnreen these two keys satisfy the query. i.e., 
suffixes starting at positions 40,27: and 13. 

The String B-tree has good perf~~i l la l lce  in ans\vering pattern nlatching 
queries and has worst-ca.se theoretical bounds like tlle ones of the regular B-tree. 
The following leillilla states the  theoretical bouilds of the String B-tree [19]. 

Lem.m.a 1. 

a)  The space complexity of the String B-tree is O ( N / B )  pages. where N is 
the  total length of the strings. and B is the disk page size. 

b) The insertion and deletion of all suffixes of a string of leilgt,h 7n take 
O ( m  logB(N + 7 7 1 ) )  I /O  operations. 

c) A root-to-leaf path traversal to  locate the first or last occurrence of patter11 

p executes in O(logB N + g )  I /O  operat.ions, where Ip( is the length of p. 

d)  Substring searching for pattern p executes in O(logB N + y) I /O  op- 
erations. mllere Ipl is the length of p. and T is the query output size. 

3.2 The 3-sided Range Query Structure 

Given a set of IV points in a two-dinlensional space, a 3-sided range query is 
defined as a query wit11 three parameters ( a l .  a2. bl) .  \\:here a1 and a2 specify- 
the lower and upper liil~its over the first. din~el~sion, respectively, and bl specifies 
the lower liinit over t'he second dimension. The  answer to  the query is all points 
(z: y) ,  u~here  a1 < n: 5 a2 a.nd y 2 bl (See Figure 3). 

The 3-sided range query structure [8] is an external lnen~ory structure that. 
is based on the external melnory priority search t.ree [35] and the persist.ent 
B-tree [ll: 451. The 3-sided range query st,ructure lias an optimal worst.-case 
t11eoret.ical bound for t.he update and 3-sided range query operations. The fol- 
lowing lemma. states the theoretical bounds of the 3-sided structure [8]. 

Lem.m,a 2. 

LI
Que,yanswer

• •
•

• ••
b1

• •
a1 a2

•

Figure 3: 3-sided query (01. a2. bl).

searching for pattern p = "en" proceeds by performing a root-to-leaf path to
locate the lexicographically first suffix containing p, which is the suffix starting
at position 40 on the disk. Another root-to-leaf path is performed to locate the
lexicographically last suffix containing p, which is the suffix starting at position
13 on the disk. All suffixes inbetween these two keys satisfy the query, i.e.,
suffixes starting at positions 40,27, and 13.

The String B-tree has good performance in answering pattern matching
queries and has worst-case theoretical bounds like the ones of the regular B-tree.
The following lemma states the theoretical bounds of the String B-tree [19].

Lemma 1.

a) The space complexity of the String B-tree is O(N/ B) pages, where N is
the total length of the strings, and B is the disk page size.

b) The insertion and deletion of all suffixes of a string of length m take
O(mlogE(N + m)) I/O operations.

c) A root- to-leaf path traversal to locate the first or last occurrence of pattern

p executes in O(lOgE N + I~I) I/O operations, where Ipl is the length of p.

d) Substring searching for pattern p executes in O(logE N + IpitT
) I/O op

erations, where Ipl is the length of p, and T is the query output size.

3.2 The 3-sided Range Query Structure

Given a set of N points in a two-dimensional space, a 3-sided range query is
defined as a query with three parameters (al. a2, bl). where al and a2 specify
the lower and upper limits over the first dimension, respectively, and bl specifies
the lower limit over the second dimension. The answer to the query is all points
(x, y), where al ::; x ::; a2 and y ::::: bl (See Figure 3).

The 3-sided range query structure [8] is an external memory structure that
is based on the external memory priority search tree [35] and the persistent
B-tree [11. 45]. The 3-sided range query structure has an optimal worst-case
theoretical bound for the update and 3-sided range query operations. The fol
lowing lemma states the theoretical bounds of the 3-sided structure [8].

Lemma 2.

7



a) The space conlplexity o f  the 3-sided range query structure is O ( N / B )  
pages. where N is the ilun~ber o f  points in the space. and B is the disk 
page size. 

b )  The insertion and deletion o f  a point take O(logB N )  worst-case 110 op- 
erations. 

c) The 3-sided range query executes in O(logB N + $) worst-case 110 oper- 
ations. where T is the output size. 

4 SBC-Tree Design and Structure 

? 2  3 1 5 6 1 8  9 10 11 12 13 14 15 16 17 I8 19 ZU 21 22 23 24 25 

A A A A A E E E B B B B B 8 S . A . A  

X 27 28 lo %I 31 32 U 34 35 35 37 38 39 10 11 12 43 

A A A A E E E B B B B A  

(a) The String B-tree for the uncompressed suffixes 

(b) The RLE-suffixes (c) The String B-tree for the RLE- 
suffixes 

Figure 4: Iildexing the uncompressed and RLE- suffixes o f  sequences 
A5E3B6SlA2 and A5G2A4E3B4A4Cl. 

a) The space complexity of the 3-sided range query structure is O(N/ B)
pages, where N is the number of points in the space, and B is the disk
page size.

b) The insertion and deletion of a point take o (logE N) worst-case I/O op
erations.

c) The 3-sided range query executes in o (logE N + ~) worst-case I/O oper
ations, where T is the output size.

4 SBC-Tree Design and Structure

1: 1: 1: 1: 1: 1: 1~ 1~ 1: 1'z 1'~ 1': 1'; (~ I'~ 1': 1': iii': 1~1'~I ': 1': 1~ 1~1

1~I': 1~I~ I~ 1~ 1:I~ I'~ I': I~ 1':1'; I': I': I'~ i "I

(a) The String B-tree for the uneampressed suffixes

RLE-suffixes order
ASE3B651 A2 2
E3 B65l A2 10
B651 A2 7
51 A2 12
A2 1
AS G2 A4 E3 B4 A4 CI 3
G2 A4 E3 B4 A4 CI I]

A4 E3 B4 A4Cl S
E3 B4 A4 CI 9
B4 A4 CI 6
A4CI 4
CI 8

(b) The RLE-suffixes (e) The String B-tree for the RLE
suffixes

18 3 14 7

Figure 4: Indexing the uncompressed and RLE- suffixes of sequences
A5E3B6S1A2 and A5G2A4E3B4A4Cl.
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Indexing the  RLE-suffixes of RLE-compressed sequences means that the gen- 
erated index ~vill not contain all suffixes of the  original (decompressed) sequence. 
Therefore, the String B-tree cannot be used directly to search the compressed 
sequences. The structure and search nlechaaisnl of the St'ring B-tree (See Sec- 
tion 3.1) are based on storing all sequences' suffixes inside tlle index. The 
fol1on;ing example denlollstrates the problem. 

E~:am.ple 1. Assume we are indexing two sequences, S1 = 

A5E3BGSlA2 and S2 = A5G2A4E3B4A4Cl. l i e  present t.he RLE-suffixes of 
S1 and S2 ill Figure 4(b). The order colunln represents the lexicographic order 
of tlle suffixes. The lluinber of the uncoinpressed and RLE- suffixes of S1 and 
S2 is 40 a.nd 12 suffixes, respectively. I11 Figures 4(a) and 4(c); we illustrate the  
String B-tree of the ullconlpressed and RLE- suffixes, respectively: assuming a 
illaximuln B-tree node size of five entries. Consider a substrin,g m.atch searching 
for pattern p = A2E3B4 over both indexes. The search over the uncoinpressed 
suffixes (Figure 4(a)) \\:ill return two hits with the suffixes starting a t  positions 
28 and 4 on the disk. However, applying the same query over the RLE-suffixes 
(Figure 4(c)) mill not return any hits. The reason is that the  suffixes starting 
with A2E3B4 are not stored in the index. instead. they are implicit-suffixes 
and a.re included in longer RLE-suffixes, i.e., t.he RLE-suffix A5E3B6SlA2 of 
S1 and A4E3B4A4C1 of S2. 

The trick to  answer t.he substrzn,g m.atch2n.g query correctly over the RLE- 
suffixes is t.o map the query pattern p = A2E3B4 int.0 p' = A2+ E3B4,  where 
A2+ nleans repeats of letter A of length larger than or equal t o  2. As a re- 
sult, RLE-suffixes a~hose prefix matches p or include implicit-suffixes whose 
prefix matches p will be an answer to  the query. For example, t,lle RLE-suffixes 
A5E3BGSlA2 and A4E3B4A4C1 starting a.t posit.ions 1 and 16 on the disk 
(Figure 4(c)) are an answer t o  the  query above. The RLE-suffix A5E3BGSlA2 
includes the implicit-suffix A2E3BGSlA2 whose prefix matches p: and the RLE- 
suffix A4E3B4A4C1 includes t,he implicit-suffix A2E3B4A4C1 whose prefix 
matches p. The following rule formalizes the substrin.g m.atch,in.g query pattern 
mapping. 

Rule I .  A substrin.g m.atching query pattern p = zl f l  2 2  f2  ... xn fn  over 
RLE-suffixes is mapped into pattern p' = xl f: x2 f 2  ... zn fn:  where xl  fit 
inea,ns repeats of character x l  of length 1a.rger than or equal to  f l .  

Although t,he query pattern mapping returns the correct answer t o  substring 
m.atch.in,g queries, tlle mapping results in another problem. The RLE-suffixes 
that  satisfy t,he mapped query pattern are not guaranteed t,o be contiguous 
inside the String B-tree index. Hence, the String B-tree search mechanism 
tha t  a.ssuines the ansurer set t o  be contiguous is no longer feasible. If p' = 

zl fit 2 2  f2 ... x, f,, is the mapped query pat'tenl, then between a.ny two RLE- 
suf f ixess ta r t i i~gwi t l~z~(f l+ i )  ~ 2 . f 2  ... znfn a l l d x l ( f l + i + l )  x2f2 ... Xn.fn: 

where i 2 0: there can be an unbounded ilunlber of RLE-suffixes that do 
not. satisfy the query. For example, the two RLE-suffixes A5E3BGSlA2 and 
A4E3B4A4Cl starting a t  positions 1 and 16: respectively: on the disk (See 
Figure 4(c)) satisfy the query pattern p' = A2+E3B4. However: the two RLE- 
suffixes in-between, i.e., A5G2A4E3B4A4Cl a,nd A4C1, which start  a t  positions 

Indexing the RLE-suffixes of RLE-compressed sequences means that the gen
erated index will not contain all suffixes of the original (decompressed) sequence.
Therefore, the String B-tree cannot be used directly to search the compressed
sequences. The structure and search mechanism of the String B-tree (See Sec
tion 3.1) are based on storing all sequences' suffixes inside the index. The
follo-wing example demonstrates the problem.

E:rample 1. Assume we are indexing two sequences, 51 =
A5E3B651A2 and 52 = A5G2A4E3B4A4Cl. We present the RLE-suffixes of
51 and 52 in Figure 4(b). The order column represents the lexicographic order
of the suffixes. The number of the uncompressed and RLE- suffixes of 51 and
52 is 40 and 12 suffixes, respectively. In Figures 4(a) and 4(c), \ve illustrate the
String B-tree of the uncompressed and RLE- suffixes, respectively, assuming a
maximum B-tree node size of five entries. Consider a substring match searching
for pattern p = A2E3B4 over both indexes. The search over the uncompressed
suffixes (Figure 4(a)) will return two hits with the suffixes starting at positions
28 and 4 on the disk. However, applying the same query over the RLE-suffixes
(Figure 4(c)) will not return any hits. The reason is that the suffixes starting
with A2E3B4 are not stored in the index. Instead, they are implicit-suffixes
and are included in longer RLE-suffixes, i.e., the RLE-suffix A5E3B651A2 of
51 and A4E3B4A4C1 of 52.

The trick to answer the substring matching query correctly over the RLE
suffixes is to map the query pattern p = A2E3B4 into pi = A2+ E3B4, where
A2+ means repeats of letter A of length larger than or equal to 2. As a re
sult, RLE-suffixes whose prefix matches p or include implicit-suffixes whose
prefix matches p will be an answer to the query. For example, the RLE-suffixes
A5E3B651A2 and A4E3B4A4C1 starting at positions 1 and 16 on the disk
(Figure 4(c)) are an answer to the query above. The RLE-suffix A5E3B651A2
includes the implicit-suffix A2E3B651A2 whose prefix matches p, and the RLE
suffix A4E3B4A4C1 includes the implicit-suffix A2E3B4A4C1 whose prefix
matches p. The following rule formalizes the substring matching query pattern
mapping.

Rule 1. A substring matching query pattern p = Xlil Xd2 ... xnfn over
RLE-suffixes is mapped into pattern pi = xlfi x2h ... xnfn, where xlii
means repeats of character Xl of length larger than or equal to h.

Although the query pattern mapping returns the correct answer to substring
matching queries, the mapping results in another problem, The RLE-suffixes
that satisfy the mapped query pattern are not guaranteed to be contiguous
inside the String B-tree index. Hence, the String B-tree search mechanism
that assumes the answer set to be contiguous is no longer feasible. If pi =
xlii x2h ... xnfn is the mapped query pattern, then between any two RLE
suffixesstartingwithxl(h+i) x2h ... xnfn andxI(h+i+1) x2h ... xnfn,
where i :::: 0: there can be an unbounded number of RLE-suffixes that do
not satisfy the query. For example, the two RLE-suffixes A5E3B651A2 and
A4E3B4A4C1 starting at positions 1 and 16, respectively, on the disk (See
Figure 4(c)) satisfy the query pattern pi = A2+ E3B4. However, the two RLE
suffixes in-between, i,e.: A5G2A4E3B4A4C1 and A4C1, which start at positions
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Figure 5: The SBC-t,ree for sequences S1 = A5E3B6SlA2, S2 = 

A5G2A4E3B4A4Cl. and Sg = E3B5G2E3B7SlE3B4. 
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12 and 22. respectively, do not sat,isfi- the query. The proposed SBC-tree index 
pfovides a solut,ion to this problem. 
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a A4 • • 

NULL • 

4.1 The SBC-tree Structure 

The SBc-tree is a two-level index structure. Tlle first level is a modified version 
of the String B-tree. and the second level is a two-diinensiona.1 index structure. 
The first. level of the SBC-tree stores the RLE-suffixes of the inserted RLE- 
compressed sequences. The second level of the SBC-tree stores for each inserted 
RLE-suffix a reference to that suffix: i.e., a tag, and the suffix's preceding RLE- 
character in the suffix's sequence (See Figure 5). 

The modification we introduce to t,he String B-tree is a numeric tag assigned 
to each leaf entry that, reflects the entry's positioi~ in the index. Ta.gs from the 
left-most leaf entr\; to t,he right-most leaf entry are of increasing order. Tags 
are assigned dynamically a t  the insertion time using the order-maintenance 
tecllnique [17]. 14'e discuss the assigninent of t,he tags in detail in Section 5.2. 
The secoild level of the SBC-t'ree can be any tm~o-dimensional index st,ruct,ure. 
1Ve consider: in this paper. the use of the R-tree [28] and the 3-sided range query 
structure [8]. The R-tree has a good perforillance in practice and is available 
in several DBAiSs, ho~\;e\~er. no theoretical bouilds are guara.nteed. Tlle 3-sided 
range query st,ruct.ure, on the other hand: llas an optimal theoretical bound for 

51 •

. . . . .

. .. . . . Tag
5 10 20 25 40 50 60 100 120 124 150 160 200 220 225 245 250 260 280 300

5 10 20 25 40 50 60 100 120 124 150 160 200 220 22 245 250 260 280 300

9 1 12 22 16 41 20 35 5 29 24 39 18 33 3 27 '4 31 7 37

~ G2
_ E3

.§ 67

~ 86

~ 85

~ 84

a:; AS

a: A4

NULL

-------------------------

aS5ig~d
lags

(b) The SBC-tree: the second leyellS the R-tree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

IAI 5 I E 13 I B I 6 1S II I AI 2 [~I AI 5 I G I 2 IAI 4 I E I JIB I 4 I

(a) The RLE sequences on the disk

Figure 5: The SBC-tree for sequences 51 A5E3B651A2. 52
A5G2A4E3B4A4CL and 53 = E3B5G2E3B751E3B4.

12 and 22, respectively, do not satisfy the query. The proposed SBC-tree index
provides a solution to this problem.

4.1 The SBC-tree Structure

The SBC-tree is a two-level index structure. The first level is a modified version
of the String B-tree, and the second level is a two-dimensional index structure.
The first level of the SBC-tree stores the RLE-suffixes of the inserted RLE
compressed sequences. The second level of the SBC-tree stores for each inserted
RLE-suffix a reference to that suffix, i.e., a tag, and the suffix's preceding RLE
character in the suffix's sequence (See Figure 5).

The modification we introduce to the String B-tree is a numeric tag assigned
to each leaf entry that reflects the entry's position in the index. Tags from the
left-most leaf entry to the right-most leaf entry are of increasing order. Tags
are assigned dynamically at the insertion time using the order-maintenance
technique [17]. 'Ve discuss the assignment of the tags in detail in Section 5.2.
The second level of the SBC-tree can be any two-dimensional index structure.
We consider, in this paper. the use of the R-tree [28] and the 3-sided range query
structure [8]. The R-tree has a good performance in practice and is available
in several DBl\ISs, however, no theoretical bounds are guaranteed. The 3-sided
range query structure, on the other hand, has an optimal theoretical bound for

10



the two-diinensional range searching. I11 this section. we use the R-tree as the 
second level of the SBC-tree. In Section 5.1, we discuss the use of the 3-sided 
range query structllre instead of the R-tree. 

The SBC-tree is maintained during the insertion as follows (a11 example is 
illustrated in Figure 5).  The ii~sertion of an RLE-compressed sequence S = 

x l  f1 x2 f 2  .. x, f,, is performed as follows. 

a )  Insert the RLE-suffixes of S into the String B-tree. 

b)  For each insert,ed RLE-suffix, e.g., xi,fi xi+l fi+l ... x,, f,: where 1 5 i 5 
12. inaii~t,ain two attributes: 

(a)  The numeric tag assigned t o  the suffix. 

(b) The suffix's preceding RLE-character, i.e., x.j.-1 fi- 1 .  If t,he inserted 
suffix is the first suffix of S, i.e., i = 1: then the preceding RLE- 
character is NULL. 

c) Insert the two attributes. i.e.. the tag and the preceding RLE-character, 
as a point into the secoi~d level of the SBC-tree. The RLE-suffix's position 
on the disk is attached to  the point. 

In Figure 5, we illustrate the structure of the SBC-tree for sequences S1 = 
A5E3B6SlA2, S 2  = A5G2A4E3B4A4C1, and S3 = E3B5G2E3B7SlE3B4.  
The precedin.g ch.aracter dimensioil of the  R-tree is ordered alphabetically, where 
the NULL chasacter is considered as the first, character in the alphabet. Each 
RLE-suffix has a correspondiilg point in the R-tree. For example, t.he first RLE- 
suffix in t,he String B-tree (A2 in sequence S1 with t'ag 5) is preceded by the 
RLE-character S1 on the disk. Therefore, the corresponding point, to  this suffix 
is (5, S1)  in the R-tree. 

In the followiilg sections we discuss how the SBC-txee is used t o  answer the 
substrin.g m.atchin.g. prefix m.atchin.g, and range search. queries. 

4.2 Answering Substring Matching Queries 

Query Definition: Given a query pattern p, where p = .xl.fl f i 2  f 2  ... x,, f,: 
find all substrings in the database whose prefix n~atches p. 

A substrin.g m.atch.in,g query is answered as follows. 

a) If the length of p is 1 .  i.e., p = x l  f l ,  then execute St,ep 2, else execute 
Steps 3 to  5. 

b) Search the SBC-tree first level, i.e., the  String B-tree. for p. The an- 
swer from the Sbring B-tree is a range specified by t.wo tags, m.in.-tag 
and m.ax-tag. m.in.-tag and max-tag correspond to  the first. and last RLE- 
suffixes, in lexicographic order, whose prefix matches p. respectively. All 
the RLE-suffixes bebween m.in,-tag and m.az-tag are the answer to  the sub- 
strin.g match.in,g query. 

the two-dimensional range searching. In this section, we use the R-tree as the
second level of the SBC-tree. In Section 5.1, we discuss the use of the 3-sided
range query structure instead of the R-tree.

The SBC-tree is maintained during the insertion as follows (an example is
illustrated in Figure 5). The insertion of an RLE-compressed sequence 5 =

xIiI Xd2 ... xn!n is performed as follows.

a) Insert the RLE-suffixes of S into the String B-tree.

b) For each inserted RLE-suffix, e.g., x;.fi xi+di+1 ... x,,!n, where 1 :::; i :::;
n, maintain two attributes:

(a) The numeric tag assigned to the suffix.

(b) The suffix's preceding RLE-character, i.e., Xi- di-I. If the inserted
suffix is the first suffix of 5, i.e., i = I, then the preceding RLE
character is NULL.

c) Insert the two attributes, i.e., the tag and the preceding RLE-character,
as a point into the second level of the SBC-tree. The RLE-suffix's position
on the disk is attached to the point.

In Figure 5, we illustrate the structure of the SBC-tree for sequences 51
A5E3B651A2, 52 = A5G2A4E3B4A4CL and 53 = E3B5G2E3B751E3B4.
The preceding character dimension of the R-tree is ordered alphabetically, where
the NULL character is considered as the first character in the alphabet. Each
RLE-suffix has a corresponding point in the R-tree. For example, the first RLE
suffix in the String B-tree (A2 in sequence 51 with tag 5) is preceded by the
RLE-character 51 on the disk. Therefore, the corresponding point to this suffix
is (5, 51) in the R-tree.

In the following sections we discuss how the SBC-tree is used to answer the
substring matching, prefix matching, and range search queries.

4.2 Answering Substring Matching Queries

Query Definition: Given a query pattern p, where p = xIII .T2h ... X n !" ,
find all substrings in the database whose prefix matches p.

A substring matching query is answered as follows.

a) If the length of p is L i.e., p = Xdl' then execute Step 2, else execute
Steps 3 to 5.

b) Search the SBC-tree first level, i.e., the String B-tree, for p. The an
swer from the String B-tree is a range specified by two tags, min_tag
and max-tag. min_tag and max-tag correspond to the first and last RLE
suffixes, in lexicographic order, whose prefix matches p, respectively. All
the RLE-suffixes between min_tag and max_tag are the answer to the sub
string matching query.

11
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Figure 6: Searching the SBC-tree. Substring matching Q1: Prefix inatchiilg Q2:  
Range query Qg. 

c) Map the query pattern p: according to Rule 1 .  into p' = XI  f: x2 f 2  ... Z, fi,. 

d) Search the SBC-tree first level; i.e., the String B-tree, for pattern p" = 
x2 f2  ... Z, f,: ignoring the first RLE-charact,er (z l  f:) in p'. The an- 
swer from the String B-tree is a range specified by two bags, min.-tag 
and m.aic_tag. m.in-tag and m.m-tag correspond to the first and last RLE- 
suffixes: in 1exicogra.phic order, whose prefix nlat,ches p", respectively. 

e) Apply a two-dimensional range query over the SBC-tree second level: i.e., 
the R-tree, where the tag dimensioll ranges from m.in-tag to max-tag, and 
the preced2n.g ch.aracter diinensioil ranges froin sl f l  to PO, where ip is xi's 
succeeding character in the alphabet C. The a.nsuler to the ra.nge query is 
the answer to the substrin,g m.atch.in,g query. 

I11 Step 1. if the length of p is 1:  then the query answer is contiguous inside 
the String B-tree. Therefore: u7e ret,rieve in Step 2 all the RLE-suffixes between 
the specified mila-tag and m.ax-tag values as the answer t,o the query. If the 
length of p is larger than 1:  then we execute Steps 3 to  5. In Step 3; we nlap p 
to p' in order to ret,rieve the RLE-suffixes whose prefix nlatches p and iinplicit- 
suffixes whose prefix matches p .  In Step 4: we search for pattern p" instead 
of p' because the RLE-suffixes whose prefix matches p' are not guaranteed to 
be contiguous inside the Sbring B-t.ree index. Ho~vever; the RLE-suffixes whose 
prefix nlatches p" are a. superset of the required answer and they are contiguous 
inside the String B-tree index. Therefore: u7e can 1oca.t.e the first and last RLE- 
suffixes satisfying p" without enuinerat.ing the suffixes in-between. In Step 5. we 
filter the answer superset by retrieving only the RLE-suffixes whose preceding 
RLE-character satisfies xl  f:: i.e., the RLE-suffixes that satisfy p'. The exact, 
start  position of the suffixes satisfying p' can be easily computed from the answer 
to the tnio-dimensional range query. 
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Figure 6: Searching the SBC-tree. Substring matching QI, Prefix matching Q2,
Range query Q3'

c) lVIap the query pattern p, according to Rule I, into pi = xIi: x2h ... x n !".

d) Search the SBC-tree first level, i.e., the String B-tree, for pattern pI! =
x2h ... X n !,,' ignoring the first RLE-character (xIi:) in p'. The an
swer from the String B-tree is a range specified by two tags, min_tag
and max_tag. min_tag and max_tag correspond to the first and last RLE
suffixes, in lexicographic order, whose prefix matches pI!, respectively.

e) Apply a two-dimensional range query over the SBC-tree second level, i.e.,
the R-tree, where the tag dimension ranges from min_tag to max_tag, and
the preceding character dimension ranges from XI!I to <pO, where <p is XI'S

succeeding character in the alphabet L:. The answer to the range query is
the answer to the substring matching query.

In Step 1, if the length of p is 1, then the query answer is contiguous inside
the String B-tree. Therefore, we retrieve in Step 2 all the RLE-suffixes between
the specified min_tag and max_tag values as the answer to the query. If the
length of p is larger than 1, then we execute Steps 3 to 5. In Step 3, we map p
to pi in order to retrieve the RLE-suffixes whose prefix matches p and implicit
suffixes whose prefix matches p. In Step 4, we search for pattern pI! instead
of pi because the RLE-suffixes whose prefix matches pi are not guaranteed to
be contiguous inside the String B-tree index. However, the RLE-suffixes whose
prefix matches pI! are a superset of the required answer and they are contiguous
inside the String B-tree index. Therefore, we can locate the first and last RLE
suffixes satisfying pI! without enumerating the suffixes in-between. In Step 5, we
filter the answer superset by retrieving only the RLE-suffixes whose preceding
RLE-character satisfies xIi:, i.e., the RLE-suffixes that satisfy p'. The exact
start position of the suffixes satisfying pi can be easily computed from the answer
to the two-dimensional range query.
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In Figure 6. we gi1.e an example of substring m.atch searching for pattern 
p = A2E3B4. The corresponding p' and p" will be A2+E3B4 and E3B4,  
respectively. The search for p" over t'he String B-tree returns the txvo ta.gs 
mirr-tagl= 160 and ma,n:-tog]= 245. The range query over the R-tree, denoted 
by Q1: has bottom-left and top-right coordinates of (160: A2) and (245, BO): 
respectively. The answer t o  t,he range query is the t,wo RLE-suffixes starting 
at. positioils 18 and 3 on tlie disk (Figure 5(a)) .  By subtracting the length of 
the RLE-characters l~receding t,hose suffixes, e.g., A4 and A5 have length of 2: 
we get. the  exact start  11osition of the RLE-suffixes satisfying p, i.e., t,he suffixes 
starting a t  positions 16 and 1 on the  disk. Notice that the suffixes a t  positions 
16 and 1 are not contiguous in the String B-tree. 

4.3 Answering Prefix Matching Queries 

Query  Definit ion: Given a query pattern p, where p = z l f l  :r2f2 ... z,, fn:  

find all database sequences \vhose prefix matches p. 
In prefix m.atch,irtg. suffixes that satisfy the query have to  be prefixes to  their 

sequences, i.e.. the suffix is the ent,ire sequence. I11 this case: no implicit-suffixes 
can be an ans\ver t o  the query because implicit-suffixes are not prefixes to  their 
sequences. Therefore. we do not need to  apply the mapping rule (Rule 1) to  
pattern p. 

A prefix m.a.tch.in,g query is ansn:ered as follows. 

a )  Search the SBC-tree first level. i.e.. the String B-tree. for pattern p = 

z l f l  x2,f2 ... ~, . f , .  The anslver from the String B-tree is a range speci- 
fied by tu-o tags. mu-tag and max-tag mzn-tag and max-tag correspond - to  the first and last RLE-suffixes. in lexicographic order.  hose prefix 
matches p. respectively. 

b) Apply a two-dimensional range query over the SBC-tree second level: i.e., 
the R-tree, \vl~ere the tag dinlension ranges from mirr-tag to  max-tag, and 
the preceding character dinlensioil equals NULL. The a.ns\ver t o  the range 
query is the answer t o  the prefix m.atch,in,g query. 

In Figure 6. we gi1.e an exanlple of prefix match searching for pattern p = 

E3B4.  The search for p over the String B-tree returns the two tags mzn-tagl= 
160 and mar-tagl= 245. The two-dimensional range query over the R-tree. 
denoted by Q2.  has bottom-left and top-right coordinates of (160. NULL)  and 
(245. NULL) .  respectively The answer to  the range query is one RLE-suffix 
that starts a t  position 27 on tlle disk (Figure 5(a)) .  All the other suffixes in the 
range are not prefixes to  their sequences. 

4.4 Answering Range Search Queries 

Q u e r y  Definit ion: Given two query patterns pl and p2. where pl = 

x1 fzl  x2 fs2 ... 2,, f ,,,. p2 = gl.fyl y2 fy2 ... ymfym and pl is lexicographi- 
cally less than p2. find all database sequences bet\veen pl and p2 in lexicographic 
order. 

In Figure 6, we giye an example of substring match searching for pattern
P = A2E3B4. The corresponding pi and p" will be A2+ E3B4 and E3B4,
respectiyely. The search for p" over the String B-tree returns the two tags
mirLtagl= 160 and ma:z:-tagl= 245. The range query over the R-tree, denoted
by Ql, has bottom-left and top-right coordinates of (160,A2) and (245,BO),
respectively. The answer to the range query is the two RLE-suffixes starting
at positions 18 and 3 on the disk (Figure 5(a)). By subtracting the length of
the RLE-characters preceding those suffixes, e.g., A4 and A5 have length of 2,
we get the exact start position of the RLE-suffixes satisfying p, i.e., the suffixes
starting at positions 16 and 1 on the disk. Notice that the suffixes at positions
16 and 1 are not contiguous in the String B-tree.

4.3 Answering Prefix Matching Queries

Query Definition: Given a query pattern p, where p = Xl.f1 :7:21"2 ... xnin,
find all database sequences \V hose prefix matches p.

In prefix matching, suffixes that satisfy the query have to be prefixes to their
sequences, i.e., the suffix is the entire sequence. In this case, no implicit-suffixes
can be an answer to the query because implicit-suffixes are not prefixes to their
sequences. Therefore, we do not need to apply the mapping rule (Rule 1) to
pattern p.

A p7'efix matching query is answered as follows.

a) Search the SBC-tree first leveL i.e., the String B-tree, for pattern p =

Xlf! .T2h ... xnfn· The answer from the String B-tree is a range speci
fied by two tags, min_tag and max_tag. min_tag and max-tag correspond
to the first and last RLE-suffixes, in lexicographic order, whose prefix
matches p, respectively.

b) Apply a two-dimensional range query over the SBC-tree second level, i.e.,
the R-tree, where the tag dimension ranges from min_tag to max-tag, and
the preceding character dimension equals NULL. The answer to the range
query is the answer to the prefix matching query.

In Figure 6, we give an example of prefix match searching for pattern p =
E3B4. The search for p over the String B-tree returns the two tags min_tagl=
160 and max_tagl= 245. The two-dimensional range query over the R-tree,
denoted by Q2, has bottom-left and top-right coordinates of (160, NU LL) and
(245, NU LL), respectively. The answer to the range query is one RLE-suffix
that starts at position 27 on the disk (Figure 5(a)). All the other suffixes in the
range are not prefixes to their sequences.

4.4 Answering Range Search Queries

Query Definition: Given two query patterns PI and P2, where PI =

xlixl x2f.r2 ... xnf."" , P2 = y!.fyl Y2iy2 ... Ymiym, and PI is lexicographi
cally less than P2, find all database sequences between PI and P2 in lexicographic
order.
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Figure 7: The SBC-tree: the secoild level is the 3-sided structure 

I11 range search queries. suffixes that satisfy the  queiy have t o  be prefixes t o  
their sequences. i.e . the suffix is the entire sequence. Therefore. we do not need 
t o  appl?- the  mapping rule (Rule 1) t o  patterns pl and p2. 

A range search query is answered as follo~vs 

a )  Search the SBC-tree first level, i.e., the String B-tree, t o  locate the first 
key larger than or equal t o  p l .  Similarly, sea.rch t,he St.ring B-t,ree t o  locate 
the last key sinaller t.ha.n or equal t o  p2. The answer from the String B-tree 
is a range specified by t,wo tags, min.-tag and m.ax-tag. 

b) Apply a. two-dimensional range query over the  SBC-tree secoild level: i.e., 
the R-tree, where the  tag dimension ra.nges from min.-tag t,o rn.ax-tig; and 
the precedin,g ch.aracter dimension equals NULL. The ansarer t o  tlle range 
query is the allswer to  the ran,ge search query. 

The range specified by m.in,-tag and m.ax-tag in Step 1 includes the  RLE- 
suffixes ~vhose lexicographic order is between pl  and p2. In Step 2: we filter tllis 
range b ~ -  retrieving only tlle RLE-suffixes that  are prefixes t,o t,heir database 
sequences, i.e., the preceding RLE-character is NULL. 

In Figure 6: we give an exa,lnple of a ran.ge search query, where pl = A5G1 
and p2 = B7S2. The first RLE-suffix larger than or equal to  pl is the suffix 
starting a t  position 12 on the disk, i.e., m.in,-tag = 20. The last RLE-suffix 
smaller tllall or equal t,o p2 is the suffix starting a t  posit'ion 35 on the disk, i.e., 
m,ax-tag = 100. The two-dimensional range query over the R-tree, denoted by 
Qs,  has bottom-left and top-right coordinates of (20: NULL)  and (100: NULL) ,  
respectively. The answer t o  tlle range query is one RLE-suffix that  starts at. 
positioil 12 on t,he disk (Figure 5(a.)). All the other suffixes in the range are not, 
prefixes to  their sequences. Notice tha t  t,he suffix sta.rting a t  position 1 on the 
disk, i.e., A5E3BGSlA2, illcludes implicit-suffixes that are between pl and p2 
in lexicographic order, e.g., A4E3BGSlA2 and A3E3BGSlA2. However: these 
suffixes are not prefixes t o  their sequences. 

Preceding Preceding Preceding Preceding Preceding Preceding
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Figure 7: The SBC-tree: the second level is the 3-sided structure

In range search queries, suffixes that satisfy the query have to be prefixes to
their sequences, i.e., the suffix is the entire sequence. Therefore, we do not need
to apply the mapping rule (Rule 1) to patterns PI and P2.

A range search query is answered as follows.

a) Search the SBC-tree first level, i.e., the String B-tree, to locate the first
key larger than or equal to Pl. Similarly, search the String B-tree to locate
the last key smaller than or equal to P2. The answer from the String B-tree
is a range specified by two tags, min_tag and max-tag.

b) Apply a two-dimensional range query over the SBC-tree second level, i.e.,
the R-tree, where the tag dimension ranges from mirLtag to max-tag, and
the preceding character dimension equals NULL. The answer to the range
query is the answer to the range search query.

The range specified by min_tag and max_tag in Step 1 includes the RLE
suffixes whose lexicographic order is between PI and P2. In Step 2, we filter this
range by retrieving only the RLE-suffixes that are prefixes to their database
sequences, i.e., the preceding RLE-character is NULL.

In Figure 6, we give an example of a range search query, where PI = A5G1
and P2 = B7S2. The first RLE-suffix larger than or equal to PI is the suffix
starting at position 12 on the disk, i.e., min_tag = 20. The last RLE-suffix
smaller than or equal to P2 is the suffix starting at position 35 on the disk i.e.,
max-tag = 100. The two-dimensional range query over the R-tree, denoted by
Q3, has bottom-left and top-right coordinates of (20, NU LL) and (100, NU LL),
respectively. The answer to the range query is one RLE-suffix that starts at
position 12 on the disk (Figure 5(a)). All the other suffixes in the range are not
prefixes to their sequences. Notice that the suffix starting at position 1 on the
disk, i.e., A5E3B6S1A2, includes implicit-suffixes that are between PI and P2
in lexicographic order, e.g., A4E3B6S1A2 and A3E3B6S1A2. However, these
suffixes are not prefixes to their sequences.

14



5 The SBC-tree Design Issues 

5.1 The Use of the 3-sided Structure 

Altllough the R-tree has a good perforinailce in practice, the worst-case theo- 
retical bounds for the update and search operations are not guaranteed. I11 this 
section, we discuss using the 3-sided range query structure proposed in [8] as 
the SBC-tree second level. Tlle 3-sided range query structure has an optimal 
\%;orst-case theoretical bound for the 3-sided two-dimensional range queries a.s 
discussed in Section 3.2. BJ- lising the 3-sided range query structure: we can 
achieve the SBC-tree claiined tlleoretical bounds. 

The key point is t,hat instead of inaiiit~aining one R-t,ree structure for all 
characters in the alphabet C. we nlaintaill a separate 3-sided range query st,ruc- 
tul-e for each character in C. V e  then insert each point in the space into the 
appropriate 3-sided structure based on the point's precedin,g c11.aracter dimen- 
sion. I11 Figure 7: we illustrate the SBC-tree using the 3-sided sbructure for 
sequences illustrated in Figure 5(a) .  We inaintain separate 3-sided structures 
for the chara.cters MULL, A. B. E. G. and S .  The NULL character is a special 
character in that its structure is a one-dimensional structure: i.e., the precedin,g 
chara.cter dimeilsioil contaiils only one value, t.he NULL value. Therefore: the 
B-tree can be used t,o index the points belonging to  this struct.ure. 

To answer a subst~in,g nzatclaing query for pattern p' = rcl f: x2J;  ... rcn f i l :  

we ma.p the range obtained from the String B-tree and specified by the m.in,-tag 
a.nd m.ax-tag values (See Sectioil 4.2) into a 3-sided query over the struc- 
ture corresponding t o  charactel r l .  The tag dinlension ra.nges from m.in,-tag 
to m,ax-tag, and the precedin,g ch,aracter dimensioil is larger than or equal to  
x l  f l .  In Figure 7, we give an example of subst~ing match searching for pattern 
p' = A2+E3B4. The rnin.-tag and m.ax-tag specified by the St,riilg B-tree are 160 
and 245, respect.ively. Tlle 3-sided query, denoted by Q1: has the tag dinlension 
ranges from 160 t o  245, and the precedin.9 character dinlension is larger t,l~a.n or 
equal t o  A2. Tlle ansnjer to  t.he query is tlle two suffixes st,art,ing at positions 
18 and 3 on the disk. 

To answer prefix matchin,g or rmge search queries, we map the range ob- 
tained from the String B-tree and specified by the min.-tag and m,ax-tag values 
(See Sections 4.3 and 4.4) into a one-dimensional query over the structure cor- 
responding t o  the NULL character. We illustrate in Figure 7; a prefix m.atch, 
searching for pattern p = E3B4.  The min.-tag and max-tag specified by the 
String B-tree are 160 and 245. respectively. The correspoilding range query, 
denobed by Q2: returns one suffix as the answer t,o t,he query, i.e., the suffix 
starting a t  position 27 on the disk. 

5.2 The SBC-tree Tags Assignment 

Each leaf entry in the first level of the SBC-tree is assigned a iluineric tag that  
represents tlle entry's relative position in the tree. The only invariant that we 
need t o  inaintain for tlie tags is that tags from the left-most leaf entry to  the 

5 The SBC-tree Design Issues

5.1 The Use of the 3-sided Structure

Although the R-tree has a good performance in practice, the worst-case theo
retical bounds for the update and search operations are not guaranteed. In this
section, we discuss using the 3-sided range query structure proposed in [8] as
the SBC-tree second level. The 3-sided range query structure has an optimal
worst-case theoretical bound for the 3-sided two-dimensional range queries as
discussed in Section 3.2. By using the 3-sided range query structure, we can
achieve the SBC-tree claimed theoretical bounds.

The key point is that instead of maintaining one R-tree structure for all
characters in the alphabet ~, we maintain a separate 3-sided range query struc
ture for each character in I:. Y\"e then insert each point in the space into the
appropriate 3-sided structure based on the point's preceding character dimen
sion. In Figure 7, we illustrate the SBC-tree using the 3-sided structure for
sequences illustrated in Figure 5(a). \\le maintain separate 3-sided structures
for the characters 1VULL, A. B. E. G. and S. The NULL character is a special
character in that its structure is a one-dimensional structure, i.e., the preceding
character dimension contains only one value, the NULL value. Therefore, the
B-tree can be used to index the points belonging to this structure.

To answer a substring rn.atching query for pattern p' = Xl!l+ x2h ... X n !" ,
we map the range obtained from the String B-tree and specified by the min_tag
and max_tag values (See Section 4.2) into a 3-sided query over the struc
ture corresponding to character Xl. The tag dimension ranges from min_tag
to max-tag, and the preceding character dimension is larger than or equal to
Xdl· In Figure 7, we give an example of substring match searching for pattern
p' = A2+ E3B4. The min_tag and max_tag specified by the String B-tree are 160
and 245, respectively. The 3-sided query, denoted by Ql, has the tag dimension
ranges from 160 to 245, and the preceding character dimension is larger than or
equal to A2. The answer to the query is the two suffixes starting at positions
18 and 3 on the disk.

To answer prefix matching or range search queries, \ve map the range ob
tained from the String B-tree and specified by the mirdag and max_tag values
(See Sections 4.3 and 4.4) into a one-dimensional query over the structure cor
responding to the NULL character. \\le illustrate in Figure 7, a prefix match
searching for pattern p = E3B4. The min_tag and max_tag specified by the
String B-tree are 160 and 245. respectively. The corresponding range query,
denoted by Q2, returns one suffix as the answer to the query, Le., the suffix
starting at position 27 on the disk.

5.2 The SBC-tree Tags Assignment

Each leaf entry in the first level of the SBC-tree is assigned a numeric tag that
represents the entry's relative position in the tree. The only invariant that we
need to maintain for the tags is that tags from the left-most leaf entry to the
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rigllt-most leaf entry are of increasing order. IVhen a new leaf 1 is inserted 
bet.ween tnro leaves l1 and 1,. 1 is assigned a tag that is between the tags of 
11 and 12: i.e. tag(l1) < ta,g(l) < tag(12). The tag assignment problenl arises 
\vhen the tags of l1 and 12 are consecutive. i t . ,  no tag can be generated between 
tag(l1) and tag(12). In this case me need to re-assign the tags to the leaf entries 
in the vicinity of 1 to make rooin for tag(1). Entries that a,re re-assigned ne\rl 
ta.gs will be deleted from the SBC-tree secoild level a.nd re-inserted with the new 
tag values. 

Diet,z a.nd Sleator (171 propose a scheme tha.t maintains dynamically the in- 
creasing property of AT tags in an anlortized O(log2 N )  CPU time per insertion. 
That is, on average, each insertion 1na.y require re-assigning ta.gs to log, N en- 
tries. The points correspondiilg to  these entries in the SBC-tree secoild level will 
be deleted and re-inserted. The scheine proposed in [17] does not require any 
data st,ructure other than the tags stored inside the String B-tree, and has the 
property that the re-assigned tags are in a contiguous region. Thus, the point. 
updates in the two-dimensional space are within a contiguous tag-dim.en.sion. 
range. Therefore, the 3-sided structure deletes and re-inserts the log, N points 
in O(logB N + (log, N ) / B )  = O(logB N )  110 operations. The follori~ing lenlina 
states the complexity of tag assignment. 

Lemm.a 3. Assigniilg a tag to a newly inserted RLE-suffix and updating 
the 3-sided structure accordingly takes an amortized O(logB N )  110 operations. 

5.3 The One-level SBC-tree 

The structure of the SBC-tree can be simplified, a t  the expense of the search 
performance, by dropping tlle SBC-trees second level; i.e., the two-dimensional 
index structure. I11 the one-level SBC-tree, instead of storing the preceding RLE- 
character of each RLE-suffix in a two-dimensional index, we store the preceding 
RLE-character inside the RLE-suffix's entry in the String B-tree in place of the 
tag entries. This siinplification inlproves the space requirements a.nd iilsertion 
perfornlance because we do not maintain a second level structure. However, the 
sea.rch performa.nce of the one-level SBC-tree is not as efficient as the search 
performance of the two-level SBC-tree. The reason is that the search, e.g., 
5ubstrin.g matchin.g, prefix m.atch,in.g, or ran.ge search, over the one-level SBC- 
tree is performed by scainliilg the keys in the range specified by tlle t.1170 tags, 
m.in-tag a.nd max-tag, sequeiltially to  check whether or not the preceding RLE- 
character satisfies the query. In the experiments section (Section 7) we coinpare 
the two-level and one-level SBC-tree variants and illustrate their advantages 
and disadvantages. 

6 Theoretical Analysis 

I11 this section: we present an analysis of the SBC-tree update and search oper- 
ations. We consider the SBC-tree as described in Section 5.1. i.e.. the SBC-tree 
using the 3-sided structure. We derive the SBC-tree theoretical bounds from the 

right-most leaf entry are of increasing order. \Vhen a new leaf I is inserted
between two leaves II and 12. I is assigned a tag that is between the tags of
11 and 12, i.e. tag(lI) < tag(l) < tag(12)· The tag assignment problem arises
when the tags of II and 12 are consecutive, i.e., no tag can be generated between
tag(i}) and tag(12)' In this case we need to re-assign the tags to the leaf entries
in the vicinity of I to make room for tag(I). Entries that are re-assigned new
tags will be deleted from the SBC-tree second level and re-inserted with the new
tag values.

Dietz and Sleator [17] propose a scheme that maintains dynamically the in
creasing property of N tags in an amortized 0(log2 N) CPU time per insertion.
That is, on average, each insertion may require re-assigning tags to log2 N en
tries. The points corresponding to these entries in the SBC-tree second level will
be deleted and re-inserted. The scheme proposed in [17] does not require any
data structure other than the tags stored inside the String B-tree, and has the
property that the re-assigned tags are in a contiguous region. Thus, the point
updates in the two-dimensional space are within a contiguous tag-dimension
range. Therefore, the 3-sided structure deletes and re-inserts the log2 N points
in o (lOgB N + (lOg2 N)/ B) = o (lOgB N) I/O operations. The following lemma
states the complexity of tag assignment.

Lemma 3. Assigning a tag to a newly inserted RLE-suffix and updating
the 3-sided structure accordingly takes an amortized O(lOgB N) I/O operations.

5.3 The One-level SBC-tree

The structure of the SBC-tree can be simplified, at the expense of the search
performance, by dropping the SBC-trees second level, i.e., the two-dimensional
index structure. In the one-level SBC-tree, instead of storing the preceding RLE
character of each RLE-suffix in a two-dimensional index, we store the preceding
RLE-character inside the RLE-suffix's entry in the String B-tree in place of the
tag entries. This simplification improves the space requirements and insertion
performance because we do not maintain a second level structure. However, the
search performance of the one-level SBC-tree is not as efficient as the search
performance of the two-level SBC-tree. The reason is that the search, e.g.,
substring matching, prefix matching, or range search, over the one-level SBC
tree is performed by scanning the keys in the range specified by the two tags,
min_tag and max_tag, sequentially to check whether or not the preceding RLE
character satisfies the query. In the experiments section (Section 7) we compare
the two-level and one-level SBC-tree variants and illustrate their advantages
and disadvantages.

6 Theoretical Analysis

In this section, we present an analysis of the SBC-tree update and search oper
ations. \Ve consider the SBC-tree as described in Section 5.1, i.e., the SBC-tree
using the 3-sided structure. \iVe derive the SBC-tree theoretical bounds from the
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Table 1: The analysis para.ineters 

Paraineter Definition 

theoretical bounds of the String B-tree and the 3-sided range query structures. 
The parameters used in the analysis are suminarized in Table 1. 
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m 

1x1 

6.1 Space Requirement 

T h e  disk page size 

T h e  to ta l  length of t he  RLE-compl-essed sequences. 
Also. t he  rir~mber of points  in t he  2D space 

The  query o u t p u t  size 

T h e  length of a RLE-compressed query pat tern  

T h e  length of an  RLE-compressed sequence 
t o  be  inserted 01- deleted 

T h e  a lphabet  size 

The SBC-tree st,ructure consists of a single String B-tree, and 1x1 3-sided struc- 
tures. The space conlplexity of the String B-tree is O(N/B)  pages (Lemma l a ) ,  
and the combined space conlplexity of the 1x1 3-sided structures is O(N/B) 
pages (Lemma 2a). Based on these bounds: we derive the following lemma. 

Lem.ma 4. The SBC-tree has an optimal externa.1-memory space complex- 
ity of O(N/B) pages. 

6.2 Update 

The insertion of an RLE-compressed sequence of length 111 requires (1) insertiilg 
m suffixes into tlle String B-tree that requires O(nzlogB(N + In)) I/O oper- 
ations (Lemma lb) :  (2) assigning m tags t,o the inserted RLE-suffixes, and 
possibly updating the 3-sided structure in the case of tag re-assignment, that, 
takes O(mlogB(iV + 112)) amortized I /O operatioils (Lemma 3): and (3) in- 
serting m poiilts into the 3-sided structure that. requires O(,nlogB(Ai + n ~ ) )  
I/O operations (Lenlina 2b). The deletion of an RLE-compressed sequeilce of 
length In requires (1) deleting m suffixes from the String B-tree that executes 
in O(nzlogB(AT + m)) I/O operatioils (Lemma lb) ,  and (2) deleting nz poiilts 
from the 3-sided structure that executes in O(mlogB(N + m))  I/O operat,ioils 
(Lemma 2b). Ba,sed on these bounds, we derive the following lemma. 

Lem.m.a 5. Tlle iilsertion and deletion operations over t,he SBC-tree execute 
in O(m logB(N + m)) amortized, and worst-case I/O operations, respectively. 

6.3 Search 

Substring m.ntch,in.g. prefix m.atchin.9, and ran.ge search queries over the SBC-tree 
are answered by performing (1) tu7o root-to-leaf path traversals over t,lle String 

Parmneter Definition

B The disk page size

N The total length of the RLE-compressed sequences.
Also, the number of points in the 2D space

T The query out.put size

Ipl The lengt.h of a RLE-compressed query paUern

m The length of an RLE-compressed sequence
to be inserted or deleted

IL:l The alphabet size

Table 1: The analysis parameters

theoretical bounds of the String B-tree and the 3-sided range query structures.
The parameters used in the analysis are summarized in Table 1.

6.1 Space Requirement

The SBC-tree structure consists of a single String B-tree, and lEI 3-sided struc
tures. The space complexity ofthe String B-tree is O(N/B) pages (Lemma 1a),
and the combined space complexity of the lEI 3-sided structures is O(N/ B)
pages (Lemma 2a). Based on these bounds, we derive the following lemma.

Lemma 4. The SBC-tree has an optimal external-memory space complex
ity of O(N/ B) pages.

6.2 Update

The insertion of an RLE-compressed sequence of length 17l requires (1) inserting
17l suffixes into the String B-tree that requires 0(17llogB(N + 17l)) I/O oper
ations (Lemma 1b), (2) assigning 17l tags to the inserted RLE-suffixes, and
possibly updating the 3-sided structure in the case of tag re-assignment, that
takes 0(17llogB(N + 17l)) amortized I/O operations (Lemma 3), and (3) in
serting 17l points into the 3-sided structure that requires 0(17llogB( N + 17l))
I/O operations (Lemma 2b). The deletion of an RLE-compressed sequence of
length Tn requires (1) deleting 17l suffixes from the String B-tree that executes
in 0(17llogB(N + 17l)) I/O operations (Lemma 1b), and (2) deleting 17l points
from the 3-sided structure that executes in 0(17llogB(N + m)) I/O operations
(Lemma 2b). Based on these bounds, we derive the following lemma.

Lemma 5. The insertion and deletion operations over the SBC-tree execute
in 0(17llogB(N + 171)) amortized, and worst-case I/O operations, respectively.

6.3 Search

Substring matching, prefix matching, and range search queries over the SBC-tree
are answered by performing (1) two root-to-leaf path traversals over the String
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B-tree that execute in O(logB N + g) I/O operations (Leinnla lc). and (2) a 
3-sided range query over the 3-sided structure that execut,es in O(logB N + g )  
110 operations (Lemma 2c). Based on t,hese bounds, we derive the follo\ving 
Ienlma. 

Lem.m.a 6. Su.bstring matcll,ing, prefiz m.atchin,g, and range search queries 
over the SBC-tree index execute in an optimal O(logB N+W) I/O operations. 

The theoretical bound for the prefix m,atch,in.g and range search. queries is 
optimal under the assunlption that indexing all suffixes is required to answer 
the substring matching queries. If substring match.in.g is ngt of interest, then 
a better theoretical bound for prefix match.ing and ran.ge search queries of 
O(logB K + w) I/O operations can be achieved. where K is the number of 
sequences [19]. 

The following theorem states the SBC-tree theoretical bounds. 
Th.eorem.. The SBC-tree has an optimal external-inen~ory spa,ce co1nplexit~- 

of O(N/B) pages. The insertion and deletion of all RLE-suffixes of a compressed 
sequence execute ill O(m logB ( N  + nz)) amortized, and worst-ca.se 110 opera- 
tions, respectively. The substring nratchin.g, prefiz m.atch,in.g, and ran.ge search 
operations over the SBC-tree index execute in an opt,inlal O(1ogB N + v) 
I/O operations. 

7 Experimental Results 

In this section, are study experimentally the performance of t,he SBC-tree in the 
context of protein secondary struct,ure databases. MTe use the Human and Swis- 
sProt protein databases available a t  h~ttp://www.pir.un~iprot.org/in.dez.sh.tm~l. 
These databases are anlong the largest protein databases available online. The 
St,ring B-tree index size for t.he uncompressed sequences of t,he SarissProt and 
Human databases is 3.5 GB and 1.2 GB: respectively. The alphabet for the pro- 
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B-tree that execute in o (logB N + I~I) I/O operations (Lemma lc), and (2) a
3-sided range query over the 3-sided structure that executes in O(logB N + f)
I/O operations (Lemma 2c). Based on these bounds, we derive the following
lemma.

Lemma 6. S'ubstring matching, prefix matching: and range search queries
over the SBC-tree index execute in an optimal O(logB N + Ipl;T) I/O operations.

The theoretical bound for the prefix: matching and range search queries is
optimal under the assumption that indexing all suffixes is required to answer
the substring matching queries. If substring matching is ngt of interest, then
a better theoretical bound for prefix matching and range search queries of
O(logB K + Ipl;T) I/O operations can be achieved. where K is the number of
sequences [19].

The following theorem states the SBC-tree theoretical bounds.
Theorem. The SBC-tree has an optimal external-memory space complexity

of O(N/ B) pages. The insertion and deletion of all RLE-suffixes of a compressed
sequence execute in O(mlogB(N + m)) amortized: and worst-case I/O opera
tions, respectively. The substring matching, prefi:r matching, and range search
operations over the SBC-tree index execute in an optimal O(logB N + Ipl;T)
I/O operations.

7 Experimental Results

In this section, we study experimentally the performance of the SBC-tree in the
context of protein secondary structure databases. \Ve use the Human and Swis
sPrat protein databases available at http://www.pir.uniprot. org/index:.shtml.
These databases are among the largest protein databases available online. The
String B-tree index size for the uncompressed sequences of the SwissProt and
Human databases is 3.5 GB and 1.2 GB, respectively. The alphabet for the pro-

18



Insertion 
Average VO Operations Relative Performance 

SwlssProl 
Database 

Human 

Figure 9: The performance under insert  operations 

Prefix Matching 
Average I10 Operations Relative Performance 

SwissProt Human 
Database 

Figure 10: Tlle perforlllailce under prefix m.atch,in.g queries 

Insertion
Average I/O Operations Relative Performance

13 SSG-tree using 3~sided [] SSG-tree using R-tre~
75 -- mone-level SSG-tree

o
o 60
)(

~
I'!
d; 45

'"c:

m30
0;
I'!
;S 15
me

a
Swiss Prot

Database
Human

Figure 9: The performance under insert operations

I

I
[] SSG-tree using R-tree

lIIJ one-level SBG-tree

~ f--

-----

I--

r=.:

9

3

6

Prefix Matching
Average I/O Operations Relative Performance

15 r------------------r- cii SSG-treeusing 3-sided

g
12

~
d;
01
c::.;:

~
~
m

eo ~
L

S_W_i_ss_p__r_ol H_u_rn_a_n__ Database

Figure 10: The performance under prefix matching queries

19



tein sequences consists of three letters, i.e., C = { E :  H ,  L ) :  and the sequences 
consist of long repeats of these letters. 

In our experiments, we study the performance of the SBC-tree for indexing 
RLE-compressed sequences against the String B-tree for iildexiilg t'lle uncom- 
pressed sequences. We coilsider three variants of the SBC-tree: the SBC-t,ree 
using the 3-sided structure, tlle SBC-tree using the R-tree, and the one-level 
SBC-tree. 

In Figure 8: we present the SBC-tree index size relative t,o t,he String B-tree 
index size. The figure illustrat,es that the one-level SBC-tree achieves around 
an order of inagnit,ude reductioil in storage, and the SBC-tree using the 3-sided 
structure or the R-tree achieves around 80% reduction in storage. The one-level 
SBC-tree involves the least storage overhead because it does not maintain a. 
second level index structure. 

In Figure 9: we present the relative perfornlance of the SBC-tree insertion 
operation. The figure presents the average number of I/O operations performed 
by the SBC-tree to insert all RLE-suffixes relative t,o the average number of I/O 
operations performed by the String B-tree to insert all uncoinpressed suffixes 
of a given sequence. The figure illustrates that the one-level SBC-t'ree achieves 
a.round 80% reductioil in the number of I/Os, whereas, the SBC-tree using the 
3-sided struct,ure or the R-tree achieves around 30% saving in 110s. This I/O 
saving is because the SBC-t.rees index the RLE-sufies that are sigilificantly 
fewer than the suffixes of t,he uncompressed sequences. The big I/O saving 
achieved by the one-level SBC-tree is beca.use of inserting the RLE-suffixes into 
the String B-tree: and no furtl~er 110s are required. However, the SBC-tree 
using the 3-sided structure or the R-tree requires, in to inserting the 
RLE-suffixes into the String B-tree, inserting a point into the two-dimensional 
space for each inserted RLE-suffix. 

In Figure 10: we present the SBC-tree I/O performance under prefix match- 
ing queries. The figure presents the average number of I /O operatioils performed 
by the SBC-tree relative t'o the average number of I/O operations performed 
by the String B-tree. The SBC-tree using the 3-sided structure or the R-tree 
achieves around tuio orders of magnitude reduction in 110s. The R-tree is a lit- 
tle worse than the 3-sided structure because the R-tree may involve traversing 
multiple paths in the tree. The one-level SBC-tree achieves around 85% I/O 
reduction. This I/O saving is because t,he SBC-tree sea,rches a range of RLE- 
suffixes that is signifimntly snlaller than the range of uncoinpressed suffixes that, 
is sea.rched by the St,ring B-tree. The big difference between the perfornlance 
of t'he one-level SBC-tree and t,he perfornlailce of the SBC-tree using either the 
3-sided structure or the R-tree is because the size of the query answer relative to 
the size of the searched range, i.e., t,he ra.nge specified by n?.in,-tag and m,ax-tag, 
is usually very small. The one-level SBC-tree scans the entire range to retrieve 
the query answer set, whereas the 3-sided structure and the R-tree retrieve only 
the query answer set froin the specified range. 

Notice that: in tlle previous experiment, we treat suffixes that are prefixes 
to their sequences like all other suffixes. In order to achieve optiinal I/O per- 
formance for answering prefix match,in.g queries by both t,he String B-tree and 

tein sequences consists of three letters, i.e., ~ = {E, H, L}, and the sequences
consist of long repeats of these letters.

In our experiments, we study the performance of the SBC-tree for indexing
RLE-compressed sequences against the String B-tree for indexing the uncom
pressed sequences. \iVe consider three variants of the SBC-tree, the SBC-tree
using the 3-sided structure, the SBC-tree using the R-tree, and the one-level
SBC-tree.

In Figure 8, we present the SBC-tree index size relative to the String B-tree
index size. The figure illustrates that the one-level SBC-tree achieves around
an order of magnitude reduction in storage, and the SBC-tree using the 3-sided
structure or the R-tree achieves around 80% reduction in storage. The one-level
SBC-tree involves the least storage overhead because it does not maintain a
second level index structure.

In Figure 9, we present the relative performance of the SBC-tree insertion
operation. The figure presents the average number of I/O operations performed
by the SBC-tree to insert all RLE-suffixes relative to the average number ofI/O
operations performed by the String B-tree to insert all uncompressed suffixes
of a given sequence. The figure illustrates that the one-level SBC-tree achieves
around 80% reduction in the number of I/Os, whereas, the SBC-tree using the
3-sided structure or the R-tree achieves around 30% saving in I/Os. This I/O
saving is because the SBC-trees index the RLE-suffixes that are significantly
fewer than the suffixes of the uncompressed sequences. The big I/O saving
achieved by the one-level SBC-tree is because of inserting the RLE-suffixes into
the String B-tree, and no further I/Os are required. However, the SBC-tree
using the 3-sided structure or the R-tree requires, in addition to inserting the
RLE-suffixes into the String B-tree, inserting a point into the two-dimensional
space for each inserted RLE-suffix.

In Figure 10, we present the SBC-tree I/O performance under prefix match
ing queries. The figure presents the average number ofl/O operations performed
by the SBC-tree relative to the average number of I/O operations performed
by the String B-tree. The SBC-tree using the 3-sided structure or the R-tree
achieves around two orders of magnitude reduction in I/Os. The R-tree is a lit
tle worse than the 3-sided structure because the R-tree may involve traversing
multiple paths in the tree. The one-level SBC-tree achieves around 85% I/O
reduction. This I/O saving is because the SBC-tree searches a range of RLE
suffixes that is significantly smaller than the range of uncompressed suffixes that
is searched by the String B-tree. The big difference between the performance
of the one-level SBC-tree and the performance of the SBC-tree using either the
3-sided structure or the R-tree is because the size of the query answer relative to
the size of the searched range, i.e., the range specified by rni1Ltag and max_tag,
is usually very small. The one-level SBC-tree scans the entire range to retrieve
the query answer set, whereas the 3-sided structure and the R-tree retrieve only
the query answer set from the specified range.

Notice that, in the previous experiment, we treat suffixes that are prefixes
to their sequences like all other suffixes. In order to achieve optimal I/O per
fonnance for answering prefix matching queries by both the String B-tree and
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t,he SBC-tree. we prefix each sequence in the dat,a.base by a special character 
Q. I11 this case, all suffixes that are prefixes to their sequeilces are cont,iguous 
in the index t,ree. By prefixing the query pattern by Q :  we guarantee that all 
leaf entries scanned by both the String B-tree and the SBC-tree belong t'o the 
query answer set,. Therefore, the String B-t,ree and t,he SBC-tree call achieve 
the same optimal I /O performance. 

The I /O performance of the SBC-tree under ran.ge search queries is presented 
in Figure 11. The figure il1ustrat.e~ that SBC-tree variants exhibit behavior 
siini1a.r to  that of the prefix match2n.g queries. Tlle I/O saving in the case of 
ran.ge search queries is slightly less than that in the case of prefix matching 
queries because range search queries usually involve larger answer sets. The 
optimal I /O performance for answering ran.ge search queries can be reached by 
bot,h the String B-tree and the SBC-tree in a. manner similar to that in the case 
of the prefix match.in.g queries. 

The SBC-tree relative performance under substring m.atch.in.g queries is pre- 
sented in Figure 12. The figure illustrates that the SBC-trees do not achieve 
I /O savings over the String B-tree of the uilcoillpressed sequences. The reasoil 
is that t'he number of 110s perfornled by the String B-t,ree is optimal, i.e., all 
1ea.f entries that are scanned by the String B-tree belong to the query answer 
set. Therefore, a t  least the same number of 110s is performed by the SBC-tree 
to only retrieve the query answer set. The SBC-t,ree using the 3-sided structure 
is the best a,illoilg the SBC-tree va.riants ~ i t h  3% and 30% additional I/O over- 
head for the S~vissprot and Human databases, respectively. The R-tree involves 
higher I/O overhead than that of the 3-sided structure beca.use t'he R-tree may 
traverse multiple paths in the tree. The one-level SBC-tree is the niorst because 
it scans the range specified by the m i x t a g  and mm-tag sequentially. This range 
is larger than the range scaaned by the String B-tree of the ullcoillpressed se- 
quences because we ignore the first RLE-character in t,he query pattern, which 
enlarges the searched range. 

o
o

Range Search
Average VO Operations Relative Performance

25 T-.---..---..---·--.---··.-.-:-.,----==~-------:= ..

I

Illl SSG-tree using 3-sided
o SSG-tree using R-tree

20 I···· m one-level SSG-treei -I

~ 15 +--------
Cl
.~

~ 10

;S
lD
!:2.

o
Swiss Prot

Database
Human

Figure 11: The performance under range search queries

the SBC-tree, \ve prefix each sequence in the database by a special character
\jJ. In this case, all suffixes that are prefixes to their sequences are contiguous
in the index tree. By prefixing the query pattern by \jJ, we guarantee that all
leaf entries scanned by both the String B-tree Rnd the SBC-tree belong to the
query answer set. Therefore, the String B-tree and the SBC-tree can achieve
the same optimal I/O performance.

The I/O performance of the SBC-tree under range search queries is presented
in Figure 11. The figure illustrates that SBC-tree variants exhibit behavior
similar to that of the prefix matching queries. The I/O saving in the case of
range search queries is slightly less than that in the case of prefix matching
queries because range search queries usually involve larger answer sets. The
optimal I/O performance for answering range search queries CRn be reached by
both the String B-tree and the SBC-tree in a manner similar to that in the case
of the prefix matching queries.

The SBC-tree relative performance under substring matching queries is pre
sented in Figure 12. The figure illustrates that the SBC-trees do not achieve
I/O savings over the String B-tree of the uncompressed sequences. The reason
is that the number of I/Os performed by the String B-tree is optimaL i.e., all
leaf entries that are scanned by the String B-tree belong to the query answer
set. Therefore, at least the same number of I/Os is performed by the SBC-tree
to only retrieve the query answer set. The SBC-tree using the 3-sided structure
is the best among the SBC-tree variants with 3% and 30% additional I/O over
head for the S'wissprot and Human databases, respectively. The R-tree involves
higher I/O overhead than that of the 3-sided structure because the R-tree may
traverse multiple paths in the tree. The one-level SBC-tree is the worst because
it scans the range specified by the min.tag and max.tag sequentially. This range
is larger than the range scanned by the String B-tree of the uncompressed se
quences because we ignore the first RLE-character in the query pattern, which
enlarges the searched range.
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In summary. tlle performance results illustrate that the SBC-tree achieves 
an optimal search performance over compressed sequences similar to that of the 
String B-tree olrer uncompressed sequences. nit11 85% reduction in storage and 
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In summary, the performance results illustrate that the SBC-tree achieves
an optimal search performance over compressed sequences similar to that of the
String B-tree over uncompressed sequences. with 85% reduction in storage and
30% reduction in insertion l/Os.

8 Conclusion

"\iVe presented the SBC-tree index structure for indexing and searching RLE
compressed sequences of arbitrary length. The SBC-tree is a two-level index
structure. the first level is the String B-tree and the second level is the 3
sided range query structure. The SBC-tree supports substring matching: prefix
matching: and range search operations over RLE-compressed sequences. The
SBC-tree has provable worst-case optimal theoretical bounds for the external
memory space requirements and search operations that are relative to the length
of the compressed sequences. "\iVe presented also two variants of the SBC-tree:
the SBC-tree using the R-tree and the one-level SBC-tree, that do not have
provable worst-case theoretical bounds for search operations, but perform well
in practice. Our performance results illustrate that the SBC-tree using the 3
sided structure achieves up to 85% reduction in storage, up to 30% reduction in
l/Os for the insertion operations: and retains the optimal search performance
achieved by the String B-tree over the uncompressed sequences.

References

\1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In
DCc, pages 279-288: 1992.

[2] A. AmiL G. Benson, and l'vI. Farach. Let sleeping files lie: pattern matching in
z-compressed files. In SODA: pages 705-714, 1994_

22



131 A. Amir, G. Benson, and hl. Farach. Optimal two-dimensional compressed match- 
ing. In ICALP, pages 215-226. 1994. 

[4] A. Amir, G. hl. Landau: and D. Sokol. Inplace run-length 2d compressed search. 
In SODA, pages 817-818. 2000. 

[5] A .  Amir, G. h,l. Landau, and U. Vishkin. Efficient pattern matching with scaling. 
Journal of Algorithms: 13(1):2-32, 1992. 

[6] A. Apostolico, G. hl. Landau, and S. Skiena. Matching for run-length encoded 
strings. Journal of Complexity: 15(1):4-16, 1999. 

171 0 .  Arbell, G. hl. Landau: and J .  S. hlitchell. Edit distance of run-length encoded 
strings. Information Processing Letters: 83(6):307-314, 2002. 

181 L. Arge, V. Samoladas, and J .  S. Vitter. On twedimensional indexability and 
optimal range search indexing. In PODS, pages 346-357, 1999. 

[9] R. Bayer and E. h/I. McCreight. Organization and maintenance of large ordered 
indices. Acta Informatics: 1:173-189, 1972. 

[lo] R. Bayer and K. Unterauer. Prefix b-trees. ACM Transactions on Database 
Systems, 2(1):11-26, 1977. 

(111 B. Becker: S. Gschwind, T .  Ohler, B. Seeger, and P. Widmayer. An asymptotically 
optimal multiversion b-tree. VLDB Journal, 5(4):264-275, 1996. 

[12] S. J. Bedathur and J. R. Haritsa. Engineering a fast online persistent suffix tree 
construction. In ICDE, pages '720-731, 2004. 

[13] T .  Bell: hl. Powell, A. h.lukherjee: and D. Adjeroh. Searching bwt compressed 
text with the boyer-moore algorithm and binary search. In DCC; pages 112-121, 
2002. 

[I41 H. Bunke and J. Csirik. Edit distance of run-length coded strings. In 
AChI/SIGAPP Symposium on Applied computing: pages 137-143, 1992. 

[15] hl .  Burrows and D. J. Wheeler. A block-sorting lossless data compression algo- 
rithm. Technical Report 124, 1994. 

[16] D. Comer. Ubiquitous b-tree. A ChI Computing Surveys, 11(2):121-137, 1979. 

[li] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In STOC, 
pages 365-372, 1987. 

[18] C. Faloutsos, hI. Ranganathan, and Y. hIanolopoulos. Fast subsequence matching 
in time-series da.tabases. In SIGMOD, pages 419-429, 1994. 

[I91 P. Ferragina and R. Grossi. The string B-tree: a new data structure for string 
search in external memory and its applications. Journal of ACM, 46(2):236-280: 
1999. 

[20] P. Ferragina and G. hlanzini. Opportunistic data structures with applications. 
In FOCS, pages 390-398, 2000. 

[21] \?I. B. Frakes and R. B. Yates, editors. Information Retrieval: Data Structures 
and Algorithms. Prentice-Hall: 1992. 

[22] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490-499: 1960. 

[23] V. Freschi and A. Bogliolo. Longest common subsequence between run-length- 
encoded strings: a new algorithm with improved parallelism. Information Pro- 
cessing Letters, 90(4) :167-173, 2004. 

13] A. Amir, G. Benson, and 1\1. Farach. Optimal two-dimensional compressed match
ing. In ICALP, pages 215-226, 1994.

[4] A. Amir, G. I'll. Landau, and D. Sokol. Inplace run-length 2d compressed search.
In SODA, pages 817-818,2000.

[5] A. Amir, G. Iv1. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Journal of Algorithms, 13(1):2-32, 1992.

[6] A. Apostolico, G. IvI. Landau, and S. Skiena. Matching for run-length encoded
strings. Journal of Complexity, 15(1):4-16, 1999.

17] O. Arbell, G. Ivl. Landau, and J. S. 1\1itchell. Edit distance of run-length encoded
strings. Information Processing Letters, 83(6):307-314, 2002.

18] L. Arge, V. Samoladas, and J. S. Vitter, On two-dimensional indexability and
optimal range search indexing. In PODS, pages 346-357, 1999.

[9] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173-189,1972.

[10] R. Bayer and K. Unterauer, Prefix b-trees. ACM Transactions on Database
Systems, 2(1):11-26, 1977.

[11] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, An asymptotically
optimal multiversion b-tree. VLDB Journal, 5(4):264-275, 1996.

[12] S. J. Bedathur and J. R. Haritsa. Engineering a fast online persistent suffix tree
construction. In ICDE, pages 720-731, 2004.

[13] T. Bell, M. Powell, A. Mukherjee, and D. Adjeroh. Searching bwt compressed
text with the boyer-moore algorithm and binary search. In DCC, pages 112-121,
2002.

[14] H. Bunke and J. Csirik. Edit distance of run-length coded strings. In
ACMjSIGAPP Symposium on Applied computing, pages 137-143, 1992.

[15] 1\1. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo
rithm. Technical Report 124, 1994.

[16] D. Comer, Ubiquitous b-tree. ACM Computing Surveys, 11(2):121-137, 1979.

[17] P. Dietz and D. Sleator, Two algorithms for maintaining order in a list. In STOC,
pages 365-372, 1987.

[18] C. Faloutsos, M. Ranganathan, and Y. IvIanolopoulos. Fast subsequence matching
in time-series databases. In SIGMOD, pages 419-429, 1994.

[19] P. Ferragina and R. Grossi. The string B-tree: a new data structure for string
search in external memory and its applications. Journal of ACM, 46(2):236-280,
1999.

[20] P. Ferragina and G. 1\1anzini. Opportunistic data structures with applications.
In FOCS, pages 390-398, 2000.

[21] \V. B. Frakes and R. B. Yates, editors. Information Retrieval: Data Structures
and Algorithms. Prentice-Hall, 1992.

[22] E. Fredkin. Trie memory. Communications of the A CM, 3(9):490-499, 1960.

[23] V. Freschi and A. Bogliolo. Longest common subsequence between run-Iength
encoded strings: a new algorithm with improved parallelism. Information Pro
cessing Letters, 90(4):167-173, 2004.

23



[24] S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, 
12:399-401. 1966. 

[25] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text in- 
dexes. In SODA. pages 841-850, 2003. 

[26] R. Grossi, A. Gupta. and J .  S. Vitter. When indexing equals compression: exper- 
iments with compressing suffix arrays and applications. In SODA: pages 636-645, 
2004. 

[27] D. Gusfield. Algorithms on strings, trees; and sequences: computer science and 
computational biology. Cambridge University Press, Ne\v York: IVY; USA: 1997. 

[28] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIG- 
MOD, pages 47-57. 1984. 

[29] L. Hammel and J .  hl. Patel. Searching on the secondary structure of protein 
sequences. In VLDB; pages 634-645, 2002. 

[30] E. Hunt: hI. P. Atkinson, and R. W. Irving. A database index to large biological 
sequences. In VLDB, pages 139-148, 2001. 

[3 11 R. W. Irving and L. Love. The suffix binary search tree and sufix ax.1 tree. Journal 
of Dzscrete Algorzthms. l(5-6):387-408. 2003. 

[32] V. hlakinen) G. Navarro, and E. Ukkonen. Approximate matching of run-length 
compressed strings. In CPM, pages 31-49, 2001. 

[33] U. hilanber and G. hlyers. Suffix arrays: A new method for on-line string searches. 
SIAM Journal on Computzng. 22(5):935-948, 1993. 

[34] E. htl. hlccreight. A space-economical suffix tree construction algorithm. Journal 
of ACM: 23(2):262-272. 1976. 

[35] E. hl. h4cCreight. Priority search trees. SIAM Journal on Computzng, 14(2):257- 
276, 1985. 

[36] A. h4offat. Implementing the ppm data compression scheme. IEEE Transactions 
on Communications~ 38(11):1917-1921, 1990. 

[37] D. R. hdorrison. Patricia: Practical algorithm to retrieve information coded in 
alphanumeric. Journal of the ACM, 15(4):514-534, 1968. 

[38] G. Navarro. Regular expression searching on compressed text. Journal of Discrete 
Algorithms, l(5-6):423-443, 2003. 

[39] N. S. Prywes and 13. J. Gray. The organization of a multilist-type associative 
memory. In IEEE Transactions on Communication and Electronics, pages 488- 
492, 1963. 

[40] P. Seshadri: hl. Livny. and R. Ramakrishnan. SEQ: A model for sequence 
databases. In ICDE: pages 232-239. 1995. 

[41] Y. Shibata. hl. Takeda. A. Shinohara. and S. Arikawa. Pattern matching in text 
compressed by using antidictionaries. In CPM. pages 37-49. 1999. 

[42] H. Tanaka and A. L. Garcia. Efficient run-length encodings. IEEE Transactions 
on Information Theory, 28(6):880-889, 1982. 

[43] S. Tats, R. A. Hankins, and J. M .  Patel. Practical suffix tree construction. In 
VLDB. pages 36-47. 2004. 

[44] T .  E. Tzoreff. hlatching patterns in strings subject to multi-linear transforma- 
tions. Theoretzcal Com.puter Science, 60(3):231-254, 1988. 

[24] S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory,
12:399-401, 1966.

[25] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text in
dexes. In SODA, pages 841-850, 2003.

[26] R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression: exper
iments with compressing suffix arrays and applications. In SODA, pages 636-645,
2004.

[27] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA, 1997.

[28] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIG
MOD, pages 47-57, 1984.

[29] L. Hammel and J. M. Patel. Searching on the secondary structure of protein
sequences. In VLDB, pages 634-645, 2002.

[30] E. Hunt, 1\1. P. Atkinson, and R. W. Irving. A database index to large biological
sequences. In VLDB, pages 139-148, 2001.

[31] R. W. Irving and L. Love. The suffix binary search tree and suffix avl tree. Journal
of Discrete Algorithms. 1(5-6) :387-408, 2003.

[32] V. IVIakinen, G. Navarro, and E. Ukkonen. Approximate matching of run-length
compressed strings. In CPM, pages 31-49, 2001.

[33] U. IVlanber and G. I'llyers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935-948, 1993.

[34] E. 1'1'1. IV1cCreight. A space-economical suffix tree construction algorithm. Journal
of ACM, 23(2):262-272, 1976.

[35] E. 1\1. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257
276, 1985.

[36] A. Moffat. Implementing the ppm data compression scheme. IEEE Transactions
on Communications, 38(11):1917-1921, 1990.

[37] D. R. IVlorrison. Patricia: Practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 15(4):514-534, 1968.

[38] G. Navarro. Regular expression searching on compressed text. Journal of Discrete
Algorithms, 1(5-6) :423-443, 2003.

[39] N. S. Prywes and H. J. Gray. The organization of a multi list-type associative
memory. In IEEE Transactions on Communication and Electronics, pages 488
492, 1963.

[40] P. Seshadri, 1\1. Livny, and R. Ramakrishnan. SEQ: A model for sequence
databases. In ICDE, pages 232-239, 1995.

[41] Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Pattern matching in text
compressed by using antidictionaries. In CPM, pages 37-49, 1999.

[42] H. Tanaka and A. L. Garcia. Efficient run-length encodings. IEEE Transactions
on Information Theory, 28(6) :880-889, 1982.

[43] S. Tata, R. A. Hankins, and J. 1'1'1. Patel. Practical suffix tree construction. In
VLDR pages 36-47, 2004.

[44] T. E. Tzoreff. Matching patterns in strings subject to multi-linear transforma
tions. Theoretical Com.puter Science, 60(3):231-254, 1988.

24



[45] P. J .  Varman and R. RI. Verma. An efficient multiversion access structure. IEEE 
TKDE, 9(3):391-409, 1997. 

[46] J .  S. Vitter. External memory algorithms and data structures: Dealing with 
hIASSIVE DATA. A CM Computing Surveys: 33(2):209-271, 2001. 

[47] P. Weiner. Linear pattern matching algorithms. In 14th IEEE Symposium on 
Switching and Automata Theory, pages 1-11: 1973. 

[48] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. 
IEEE Transactions on Informatzon Theory, 23(3):337-343, 1977. 

1491 J. Ziv and A. Lempel. Compression of individual sequences via variable-rate 
coding. IEEE Transactions on Information Theory. 24(5):530-536, 1978. 

[45] P. J. Varman and R. Iv1. Verma. An efficient multiversion access structure. IEEE
TKDE, 9(3):391-409, 1997.

[46] J. S. Vitter. External memory algorithms and data structures: Dealing with
tvlASSIVE DATA. ACM Computing Surveys, 33(2):209-271, 2001.

[47] P. Weiner. Linear pattern matching algorithms. In 14th IEEE Symposium on
Switching and Automata Theory, pages 1-11. 1973.

[48] J. Ziv and A. LempeI. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337-343, 1977.

[49] J. Ziv and A. LempeI. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 24(5):530-536, 1978.

25


	The SBC-Tree: An Index for Run-Length Compressed Sequences
	Report Number:
	

	tmp.1307986960.pdf.pVNRB

