89 research outputs found

    Heart rate variability: Measurement and emerging use in critical care medicine

    Get PDF
    Variation in the time interval between consecutive R wave peaks of the QRS complex has long been recognised. Measurement of this RR interval is used to derive heart rate variability. Heart rate variability is thought to reflect modulation of automaticity of the sinus node by the sympathetic and parasympathetic components of the autonomic nervous system. The clinical application of heart rate variability in determining prognosis post myocardial infarction and the risk of sudden cardiac death is well recognised. More recently, analysis of heart rate variability has found utility in predicting foetal deterioration, deterioration due to sepsis and impending multiorgan dysfunction syndrome in critically unwell adults. Moreover, reductions in heart rate variability have been associated with increased mortality in patients admitted to the intensive care unit. It is hypothesised that heart rate variability reflects and quantifies the neural regulation of organ systems such as the cardiovascular and respiratory systems. In disease states, it is thought that there is an ‘uncoupling’ of organ systems, leading to alterations in ‘inter-organ communication’ and a clinically detectable reduction in heart rate variability. Despite the increasing evidence of the utility of measuring heart rate variability, there remains debate as to the methodology that best represents clinically relevant outcomes. With continuing advances in technology, our understanding of the physiology responsible for heart rate variability evolves. In this article, we review the current understanding of the physiological basis of heart rate variability and the methods available for its measurement. Finally, we review the emerging use of heart rate variability analysis in intensive care medicine and conditions in which heart rate variability has shown promise as a potential physiomarker of disease

    Comparison of Artificial Neural Network and Logistic Regression Models for Predicting In-Hospital Mortality after Primary Liver Cancer Surgery

    Get PDF
    BACKGROUND: Since most published articles comparing the performance of artificial neural network (ANN) models and logistic regression (LR) models for predicting hepatocellular carcinoma (HCC) outcomes used only a single dataset, the essential issue of internal validity (reproducibility) of the models has not been addressed. The study purposes to validate the use of ANN model for predicting in-hospital mortality in HCC surgery patients in Taiwan and to compare the predictive accuracy of ANN with that of LR model. METHODOLOGY/PRINCIPAL FINDINGS: Patients who underwent a HCC surgery during the period from 1998 to 2009 were included in the study. This study retrospectively compared 1,000 pairs of LR and ANN models based on initial clinical data for 22,926 HCC surgery patients. For each pair of ANN and LR models, the area under the receiver operating characteristic (AUROC) curves, Hosmer-Lemeshow (H-L) statistics and accuracy rate were calculated and compared using paired T-tests. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and the relative importance of variables. Compared to the LR models, the ANN models had a better accuracy rate in 97.28% of cases, a better H-L statistic in 41.18% of cases, and a better AUROC curve in 84.67% of cases. Surgeon volume was the most influential (sensitive) parameter affecting in-hospital mortality followed by age and lengths of stay. CONCLUSIONS/SIGNIFICANCE: In comparison with the conventional LR model, the ANN model in the study was more accurate in predicting in-hospital mortality and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data

    Spatiotemporal DNA methylome dynamics of the developing mouse fetus

    Get PDF
    Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders

    The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions

    Get PDF

    Monitoring of Intracapillary HbO2 in Foetal Scalp during Delivery

    No full text

    Fetal heart rate monitoring

    No full text
    • …
    corecore