62 research outputs found

    Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism

    Get PDF
    Background: Active sodium absorption is the dominant mechanism of ion transport in airway epithelium, but its role in pulmonary physiology and airway host defense is unknown. To address this question, we studied the function of airway epithelial cells and determined the frequency of pulmonary symptoms in patients with systemic pseudohypoaldosteronism, a salt-losing disorder caused by loss-of-function mutations in the genes for the epithelial sodium channel. Methods: In nine patients 1.5 to 22 years of age who had systemic pseudohypoaldosteronism, we tested for mutations in the genes for the epithelial sodium channel, estimated the rate of sodium transport in the airway, determined the volume and ion composition of airway surface liquid, reviewed clinical features, collected laboratory data pertinent to pulmonary function, and, in three adults, measured mucociliary clearance. Results: The patients with systemic pseudohypoaldosteronism had loss-of-function mutations in the genes for the epithelial sodium-channel subunits, no sodium absorption from airway surfaces, and a volume of airway surface liquid that was more than twice the normal value. The mean (±SE) mucociliary transport rate was higher in the 3 adult patients than in 12 normal subjects (2.0 ± 0.7 vs. 0.5 ± 0.3 percent per minute, P = 0.009). Young patients (those five years of age or less) all had recurrent episodes of chest congestion, coughing, and wheezing, but no airway infections with Staphylococcus aureus or Pseudomonas aeruginosa. Older patients (those more than five years of age) had less frequent respiratory symptoms. Conclusions: Patients with systemic pseudohypoaldosteronism fail to absorb liquid from airway surfaces; the result is an increased volume of liquid in the airways. These results demonstrate that sodium transport has a role in regulating the volume of liquid on airway surfaces

    Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters

    Get PDF
    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments

    Purinergic mechanism in the immune system: A signal of danger for dendritic cells

    Get PDF
    There is increasing appreciation that injured or stressed cells release molecules endowed with the ability to modulate dendritic cell maturation. The role of these molecules is thought to be that of alerting the body of an impending danger, and initiate and shape the subsequent immune response. Nucleotides are perfectly suited for this task as they are easily released upon damage of the cell membrane, rapidly diffuse in the extracellular environment and ligate specific plasma membrane receptors expressed by dendritic cells and other mononuclear phagocytes. A better knowledge of the modulation of dendritic cell responses by extracellular nucleotides may provide novel routes to enhance the immune response and increase the efficacy of vaccination

    Laminin-332 alters connexin profile, dye coupling and intercellular Ca(2+ )waves in ciliated tracheal epithelial cells

    Get PDF
    BACKGROUND: Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332) proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC). METHODS: Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca(2+ )waves. Expression of connexin (Cx) mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. RESULTS: When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca(2+ )waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca(2+)waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. CONCLUSION: Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function

    Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression

    Get PDF
    The ABCG2 membrane protein is a key xeno- and endobiotic transporter, modulating the absorption and metabolism of pharmacological agents and causing multidrug resistance in cancer. ABCG2 is also involved in uric acid elimination and its impaired function is causative in gout. Analysis of ABCG2 expression in the erythrocyte membranes of healthy volunteers and gout patients showed an enrichment of lower expression levels in the patients. By genetic screening based on protein expression, we found a relatively frequent, novel ABCG2 mutation (ABCG2-M71V), which, according to cellular expression studies, causes reduced protein expression, although with preserved transporter capability. Molecular dynamics simulations indicated a stumbled dynamics of the mutant protein, while ABCG2-M71V expression in vitro could be corrected by therapeutically relevant small molecules. These results suggest that personalized medicine should consider this newly discovered ABCG2 mutation, and genetic analysis linked to protein expression provides a new tool to uncover clinically important mutations in membrane proteins. © 2018 The Author(s)

    Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes

    Get PDF
    Our study tested the hypothesis that immunoglobulins differ in their ability to activate the nuclear factor-κB pathway mediated cellular responses. These responses are modulated by several properties of the immune complex, including the ratio of antibody isotypes binding to antigen. Immunoassays allow the measurement of antigen specific antibodies belonging to distinct immunoglobulin classes and subclasses but not the net biological effect of the combination of these antibodies. We set out to develop a biosensor that is suitable for the detection and characterization of antigen specific serum antibodies. We genetically modified the monocytoid U937 cell line carrying Fc receptors with a plasmid encoding NF-κB promoter-driven GFP. This clone, U937-NF-κB, was characterized with respect to FcR expression and response to solid-phase immunoglobulins. Human IgG3, IgG4 and IgG1 induced GFP production in a time- and dose-dependent manner, in this order of efficacy, while IgG2 triggered no activation at the concentrations tested. IgA elicited no response alone but showed significant synergism with IgG3 and IgG4. We confirmed the importance of activation via FcγRI by direct stimulation with monoclonal antibody and by competition assays. We used citrullinated peptides and serum from rheumatoid arthritis patients to generate immune complexes and to study the activation of U937-NF-κB, observing again a synergistic effect between IgG and IgA. Our results show that immunoglobulins have distinct pro-inflammatory potential, and that U937-NF-κB is suitable for the estimation of biological effects of immune-complexes, offering insight into monocyte activation and pathogenesis of antibody mediated diseases

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogues against human glioblastoma cells.

    No full text
    The inhibition of kinesin Eg5 by small molecules such as monastrol is currently evaluated as an approach to develop a novel class of antiproliferative drugs for the treatment of malignant tumours. Therefore, we studied the effects of the new monastrol analogues enastron, dimethylenastron and vasastrol VS-83 on the proliferation of human glioblastoma cells in the kinetic crystal violet assay. Compared to monastrol, the new cell cycle specific compounds showed an at least one order of magnitude higher anti proliferative activity against U-87 MG, U-118 MG, and U-373 MG glioblastoma cells. The compounds were neither inactivated by hydrolysis nor by binding to serum proteins. Moreover, we demonstrated the characteristic monoaster formation after incubation of cells with the new compounds by confocal laser scanning microscopy. We also showed that the arrangement of beta-actin and tubulin, vital components of the cyto-skeleton of mitotic and quiescent cells, were not affected by the new compounds. Due to the necessity of overcoming the blood-brain barrier in the treatment of brain tumours, we investigated if the new monastrol analogues are modulators or substrates of the p-glycoprotein (p-gp) 170 by a flow cytometric calcein-AM efflux assay. The tested compounds showed no modulating effects on the p-gp function. With respect to the treatment of primary and secondary CNS tumours, the results of our experiments suggest that the new monastrol analogues represent an interesting class of potential anticancer drugs, predicted to be less neurotoxic in comparison to classical tubulin inhibitors

    Applying a "double-feature" promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery

    No full text
    Human embryonic stem (HuES) cells represent a new potential tool for cell-therapy and gene-therapy applications. However, these approaches require the development of efficient, stable gene delivery, and proper progenitor cell and tissue separation methods. In HuES cell lines, we have generated stable, enhanced green fluorescent protein (EGFP)-expressing clones using a transposon-based (Sleeping Beauty) system. This method yielded high percentage of transgene integration and expression. Similarly to a lentiviral expression system, both the undifferentiated state and the differentiation pattern of the HuES cells were preserved. By using the CAG promoter, in contrast to several other constitutive promoter sequences (such as CMV, elongation factor 1alpha, or phosphoglycerate kinase), an exceptionally high EGFP expression was observed in differentiated cardiomyocytes. This phenomenon was independent of the transgene sequence, methods of gene delivery, copy number, and the integration sites. This "double-feature" promoter behavior, that is providing a selectable marker for transgene expressing undifferentiated stem cells, and also specifically labeling differentiated cardiomyocytes, was assessed by transcriptional profiling. We found a positive correlation between CAG promoter-driven EGFP transcription and expression of cardiomyocyte-specific genes. Our experiments indicate an efficient applicability of transposon-based gene delivery into HuES cells and provide a novel approach to identify differentiated tissues by exploiting a nontypical behavior of a constitutively active promoter, thereby avoiding invasive drug selection methods. Stem Cells 2009;27:1077-1087
    corecore