524 research outputs found
Risk, commercialism and social purpose: Repositioning the English housing association sector
Originally seen as the ‘third arm’ of UK housing policy, the independent, not-for-profit housing association sector had long been seen as effective in ‘filling the gap’ where the state or market were unable to provide for households in need. Since the 1980s in particular, successive governments had viewed housing associations in favourable terms as efficient, semi-autonomous social businesses, capable of leveraging significant private funding. By 2015, in contrast, central government had come to perceive the sector as inefficient, bureaucratic and wasteful of public subsidy. Making use of institutional theory, this paper considers this paradigm shift and examines the organisational responses to an increasingly challenging operating environment. By focusing, in particular, on large London housing associations, the paper analyses their strategic decision-making to address the opportunities and threats presented. The paper argues that in facing an era of minimal subsidy, low security and high risk, the 2015 reforms represent a critical juncture for the sector. Housing organisations face a stark dilemma about whether to continue a strategy of ‘profit for purpose’ or to embrace an unambiguously commercial ethos. The article contends that the trajectory of decision-making (although not unidirectional) leads ultimately towards an increased exposure to risk and vulnerability to changes in the housing market. More fundamentally, the attempt to reconcile social and commercial logics is likely to have wider consequences for the legitimacy of the sector
Doping of a One-Dimensional Mott Insulator: Photoemision and Optical Studies of SrCuO
The spectral properties of a one-dimensional (1D) single-chain Mott insulator
SrCuO have been studied in angle-resolved photoemission and optical
spectroscopy, at half filling and with small concentrations of extra charge
doped into the chains via high oxygen pressure growth. The single- particle gap
is reduced with oxygen doping, but the metallic state is not reached. The
bandwidth of the charge-transfer band increases with doping, while the state
becomes narrower, allowing unambiguous observation of separated spinon and
holon branches in the doped system. The optical gap is not changed upon doping,
indicating that a shift of chemical potential rather than decrease of
corelation gap is responsible for the apparent reduction of the photoemission
gap.Comment: 4 pages, 2 figure
On the optical conductivity of Electron-Doped Cuprates I: Mott Physics
The doping and temperature dependent conductivity of electron-doped cuprates
is analysed. The variation of kinetic energy with doping is shown to imply that
the materials are approximately as strongly correlated as the hole-doped
materials. The optical spectrum is fit to a quasiparticle scattering model;
while the model fits the optical data well, gross inconsistencies with
photoemission data are found, implying the presence of a large, strongly doping
dependent Landau parameter
Scaling of the superfluid density in high-temperature superconductors
A scaling relation \rho_s \simeq 35\sigma_{dc}T_c has been observed in the
copper-oxide superconductors, where \rho_s is the strength of the
superconducting condensate, T_c is the critical temperature, and \sigma_{dc} is
the normal-state dc conductivity close to T_c. This scaling relation is
examined within the context of a clean and dirty-limit BCS superconductor.
These limits are well established for an isotropic BCS gap 2\Delta and a
normal-state scattering rate 1/\tau; in the clean limit 1/\tau \ll 2\Delta, and
in the dirty limit 1/\tau > 2\Delta. The dirty limit may also be defined
operationally as the regime where \rho_s varies with 1/\tau. It is shown that
the scaling relation \rho_s \propto \sigma_{dc}T_c is the hallmark of a BCS
system in the dirty-limit. While the gap in the copper-oxide superconductors is
considered to be d-wave with nodes and a gap maximum \Delta_0, if 1/\tau >
2\Delta_0 then the dirty-limit case is preserved. The scaling relation implies
that the copper-oxide superconductors are likely to be in the dirty limit, and
that as a result the energy scale associated with the formation of the
condensate is scaling linearly with T_c. The a-b planes and the c axis also
follow the same scaling relation. It is observed that the scaling behavior for
the dirty limit and the Josephson effect (assuming a BCS formalism) are
essentially identical, suggesting that in some regime these two effects may be
viewed as equivalent. This raises the possibility that electronic
inhomogeneities in the copper-oxygen planes may play an important role in the
nature of the superconductivity in the copper-oxide materials.Comment: 8 pages with 5 figures and 1 tabl
Infrared Signature of the Superconducting State in Pr(2-x)Ce(x)CuO(4)
We measured the far infrared reflectivity of two superconducting
Pr(2-x)Ce(x)CuO(4) films above and below Tc. The reflectivity in the
superconducting state increases and the optical conductivity drops at low
energies, in agreement with the opening of a (possibly) anisotropic
superconducting gap. The maximum energy of the gap scales roughly with Tc as 2
Delta_{max} / kB Tc ~ 4.7. We determined absolute values of the penetration
depth at 5 K as lambda_{ab} = (3300 +/- 700) A for x = 0.15 and lambda_{ab} =
(2000 +/- 300) A for x = 0.17. A spectral weight analysis shows that the
Ferrell-Glover-Tinkham sum rule is satisfied at conventional low energy scales
\~ 4 Delta_{max}.Comment: 4 pages, 4 figure
- …