112 research outputs found
Cognitive and Behavioral Domains That Reliably Differentiate Normal Aging and Dementia in Down Syndrome
Primary care integration of Down syndrome (DS)-specific dementia screening is strongly advised. The current study employed principal components analysis (PCA) and classification and regression tree (CART) analyses to identify an abbreviated battery for dementia classification. Scale- and subscale-level scores from 141 participants (no dementia n = 68; probable Alzheimer’s disease n = 73), for the Severe Impairment Battery (SIB), Dementia Scale for People with Learning Disabilities (DLD), and Vineland Adaptive Behavior Scales—Second Edition (Vineland-II) were analyzed. Two principle components (PC1, PC2) were identified with the odds of a probable dementia diagnosis increasing 2.54 times per PC1 unit increase and by 3.73 times per PC2 unit increase. CART analysis identified that the DLD sum of cognitive scores (SCS \u3c 35 raw) and Vineland-II community subdomain (\u3c 36 raw) scores best classified dementia. No significant difference in the PCA versus CART area under the curve (AUC) was noted (D(65.196) = −0.57683; p = 0.57; PCA AUC = 0.87; CART AUC = 0.91). The PCA sensitivity was 80% and specificity was 70%; CART was 100% and specificity was 81%. These results support an abbreviated dementia screening battery to identify at-risk individuals with DS in primary care settings to guide specialized diagnostic referral
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres
An updated visual orbit of the directly-imaged exoplanet 51 Eridani b and prospects for a dynamical mass measurement with Gaia
We present a revision to the visual orbit of the young, directly-imaged
exoplanet 51 Eridani b using four years of observations with the Gemini Planet
Imager. The relative astrometry is consistent with an eccentric
() orbit at an intermediate inclination
(\,deg), although circular orbits cannot be excluded due to
the complex shape of the multidimensional posterior distribution. We find a
semi-major axis of \,au and a period of
\,yr, assuming a mass of 1.75\,M for the host
star. We find consistent values with a recent analysis of VLT/SPHERE data
covering a similar baseline. We investigated the potential of using absolute
astrometry of the host star to obtain a dynamical mass constraint for the
planet. The astrometric acceleration of 51~Eri derived from a comparison of the
{\it Hipparcos} and {\it Gaia} catalogues was found to be inconsistent at the
2--3 level with the predicted reflex motion induced by the orbiting
planet. Potential sources of this inconsistency include a combination of random
and systematic errors between the two astrometric catalogs or the signature of
an additional companion within the system interior to current detection limits.
We also explored the potential of using {\it Gaia} astrometry alone for a
dynamical mass measurement of the planet by simulating {\it Gaia} measurements
of the motion of the photocenter of the system over the course of the extended
eight-year mission. We find that such a measurement is only possible (\%
probability) given the most optimistic predictions for the {\it Gaia} scan
astrometric uncertainties for bright stars, and a high mass for the planet
(\,M).Comment: 17 pages, 11 figures. Accepted for publication in the Astronomical
Journa
HD 165054: An Astrometric Calibration Field for High-contrast Imagers in Baade's Window
We present a study of the HD 165054 astrometric calibration field that has been periodically observed with the Gemini Planet Imager (GPI). HD 165054 is a bright star within Baade's Window, a region of the galactic plane with relatively low extinction from interstellar dust. HD 165054 was selected as a calibrator target due to the high number density of stars within this region (~3 stars per square arcsecond with H < 22), necessary because of the small field of view of the GPI. Using nine epochs spanning over five years, we have fit a standard five-parameter astrometric model to the astrometry of seven background stars within close proximity to HD 165054 (ρ < 2''). We achieved a proper motion precision of ~0.3 mas yr⁻¹ and constrained the parallax of each star to be ≾1 mas. Our measured proper motions and parallax limits are consistent with the background stars being a part of the galactic bulge. Using these measurements, we find no evidence of any systematic trend of either the plate scale or the north angle offset of GPI between 2014 and 2019. We compared our model describing the motions of the seven background stars to observations of the same field in 2014 and 2018 obtained with Keck/NIRC2, an instrument with excellent astrometric calibration. We find that the predicted position of the background sources is consistent with that measured by NIRC2, within the uncertainties of the calibration of the two instruments. In the future, we will use this field as a standard astrometric calibrator for the upgrade of GPI and potentially for other high-contrast imagers
High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation
First Resolved Scattered-light Images of Four Debris Disks in Scorpius-Centaurus with the Gemini Planet Imager
We present the first spatially resolved scattered-light images of four debris disks around members of the Scorpius-Centaurus (Sco-Cen) OB association with high-contrast imaging and polarimetry using the Gemini Planet Imager (GPI). All four disks are resolved for the first time in polarized light, and one disk is also detected in total intensity. The three disks imaged around HD 111161, HD 143675, and HD 145560 are symmetric in both morphology and brightness distribution. The three systems span a range of inclinations and radial extents. The disk imaged around HD 98363 shows indications of asymmetries in morphology and brightness distribution, with some structural similarities to the HD 106906 planet–disk system. Uniquely, HD 98363 has a wide comoving stellar companion, Wray 15-788, with a recently resolved disk with very different morphological properties. HD 98363 A/B is the first binary debris disk system with two spatially resolved disks. All four targets have been observed with ALMA, and their continuum fluxes range from one nondetection to one of the brightest disks in the region. With the new results, a total of 15 A/F stars in Sco-Cen have resolved scattered-light debris disks, and approximately half of these systems exhibit some form of asymmetry. Combining the GPI disk structure results with information from the literature on millimeter fluxes and imaged planets reveals a diversity of disk properties in this young population. Overall, the four newly resolved disks contribute to the census of disk structures measured around A/F stars at this important stage in the development of planetary systems
The Gemini Planet Imager Exoplanet Survey : giant planet and brown dwarf demographics from 10 to 100 au
We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey. This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semimajor axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M* > 1.5 M⊙ more likely to host planets with masses between 2 and 13MJup and semimajor axes of 3–100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semimajor axis (a) for planet populations around high-mass stars (M* > 1.5 M⊙) of the form d2N/(dm da) ∝ mα aβ, finding α = −2.4 ± 0.8 and β = −2.0 ± 0.5, and an integrated occurrence rate of 9+5-4% between 5–13MJup and 10–100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.8+0.8-0.5% of stars hosting a brown dwarf companion between 13–80MJup and 10–100 au. Brown dwarfs also appear to be distributed differently in mass and semimajor axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semimajor axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the radial velocity method, our results are consistent with a peak in occurrence of giant planets between ∼1 and 10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.Peer reviewe
Debris disk results from the Gemini Planet Imager Exoplanet Survey's polarimetric imaging campaign
Funding: Supported by NSF grants AST-1411868 (E.L.N., K.B.F., B.M., and J.P.), AST-141378 (G.D.), and AST-1518332 (T.M.E., R.J.D.R., J.R.G., P.K., G.D.). Supported by NASA grants NNX14AJ80G (E.L.N., B.M., F.M., and M.P.), NNX15AC89G and NNX15AD95G/NExSS (T.M.E., B.M., R.J.D.R., G.D., J.J.W, J.R.G., P.K.), NN15AB52l (D.S.), and NNX16AD44G (K.M.M.). M.R. is supported by the NSF Graduate Research Fellowship Program under grant number DGE-1752134. J.R. and R.D. acknowledge support from the Fonds de Recherche du Quèbec. J. Mazoyer’s work was performed in part under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. M.M.B. and J.M. were supported by NASA through Hubble Fellowship grants #51378.01-A and HST-HF2-51414.001, respectively, and I.C. through Hubble Fellowship grant HST-HF2-51405.001-A, awarded by the Space Telescope Science Institute, which is operated by AURA, for NASA, under contract NAS5-26555. K.W.D. is supported by an NRAO Student Observing Support Award SOSPA3-007. J.J.W. is supported by the Heising-Simons Foundation 51 Pegasi b postdoctoral fellowship.We report the results of a ∼4 yr direct imaging survey of 104 stars to resolve and characterize circumstellar debris disks in scattered light as part of the Gemini Planet Imager (GPI) Exoplanet Survey. We targeted nearby (≲150 pc), young (≲500 Myr) stars with high infrared (IR) excesses (LIR/L⋆ > 10-5), including 38 with previously resolved disks. Observations were made using the GPI high-contrast integral field spectrograph in H-band (1.6 μm) coronagraphic polarimetry mode to measure both polarized and total intensities. We resolved 26 debris disks and 3 protoplanetary/transitional disks. Seven debris disks were resolved in scattered light for the first time, including newly presented HD 117214 and HD 156623, and we quantified basic morphologies of five of them using radiative transfer models. All of our detected debris disks except HD 156623 have dust-poor inner holes, and their scattered-light radii are generally larger than corresponding radii measured from resolved thermal emission and those inferred from spectral energy distributions. To assess sensitivity, we report contrasts and consider causes of nondetections. Detections were strongly correlated with high IR excess and high inclination, although polarimetry outperformed total intensity angular differential imaging for detecting low-inclination disks (≲70°). Based on postsurvey statistics, we improved upon our presurvey target prioritization metric predicting polarimetric disk detectability. We also examined scattered-light disks in the contexts of gas, far-IR, and millimeter detections. Comparing H-band and ALMA fluxes for two disks revealed tentative evidence for differing grain properties. Finally, we found no preference for debris disks to be detected in scattered light if wide-separation substellar companions were present.Publisher PDFPeer reviewe
- …