25 research outputs found

    Public Attitudes toward Consent and Data Sharing in Biobank Research: A Large Multi-site Experimental Survey in the US

    Get PDF
    Individuals participating in biobanks and other large research projects are increasingly asked to provide broad consent for open-ended research use and widespread sharing of their biosamples and data. We assessed willingness to participate in a biobank using different consent and data sharing models, hypothesizing that willingness would be higher under more restrictive scenarios. Perceived benefits, concerns, and information needs were also assessed. In this experimental survey, individuals from 11 US healthcare systems in the Electronic Medical Records and Genomics (eMERGE) Network were randomly allocated to one of three hypothetical scenarios: tiered consent and controlled data sharing; broad consent and controlled data sharing; or broad consent and open data sharing. Of 82,328 eligible individuals, exactly 13,000 (15.8%) completed the survey. Overall, 66% (95% CI: 63%–69%) of population-weighted respondents stated they would be willing to participate in a biobank; willingness and attitudes did not differ between respondents in the three scenarios. Willingness to participate was associated with self-identified white race, higher educational attainment, lower religiosity, perceiving more research benefits, fewer concerns, and fewer information needs. Most (86%, CI: 84%–87%) participants would want to know what would happen if a researcher misused their health information; fewer (51%, CI: 47%–55%) would worry about their privacy. The concern that the use of broad consent and open data sharing could adversely affect participant recruitment is not supported by these findings. Addressing potential participants’ concerns and information needs and building trust and relationships with communities may increase acceptance of broad consent and wide data sharing in biobank research

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link

    Impact of spatial organization on a novel auxotrophic interaction among soil microbes

    Get PDF
    A key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species-species and species-environment interactions in spatially organized environment requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a specific defined system to study the metabolic interactions in a spatial context among a plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indica under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant-seed treatments and for vertical farming under defined conditions
    corecore