203 research outputs found

    Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C

    Get PDF
    Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds

    Lightweight thermally efficient composite feedlines, preliminary design and evaluation

    Get PDF
    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and non-vacuum jacketed concepts, and incorporate the latest technology developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts were evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. It is shown that composite tubing provides improved thermal performance and reduced weight for each design concept considered. Approximately 12 kg (26 lb.) can be saved by the use of composite tubing for the LH2 feedline and the other propulsion lines in the space tug

    Low-frequency ionospheric sounding with Narrow Bipolar Event lightning radio emissions: regular variabilities and solar-X-ray responses

    Get PDF
    We present refinements of a method of ionospheric D-region sounding that makes opportunistic use of powerful (10<sup>9</sup>–10<sup>11</sup> W) broadband lightning radio emissions in the low-frequency (LF; 30–300 kHz) band. Such emissions are from "Narrow Bipolar Event" (NBE) lightning, and they are characterized by a narrow (10-μs), simple emission waveform. These pulses can be used to perform time-delay reflectometry (or "sounding") of the D-region underside, at an effective LF radiated power exceeding by orders-of-magnitude that from man-made sounders. We use this opportunistic sounder to retrieve instantaneous LF ionospheric-reflection height whenever a suitable lightning radio pulse from a located NBE is recorded. We show how to correct for three sources of "regular" variability, namely solar zenith angle, radio-propagation range, and radio-propagation azimuth. The residual median magnitude of the noise in reflection height, after applying the regression corrections for the three regular variabilities, is on the order of 1 km. This noise level allows us to retrieve the D-region-reflector-height variation with solar X-ray flux density for intensity levels at and above an M-1 flare. The instantaneous time response is limited by the occurrence rate of NBEs, and the noise level in the height determination is typically in the range ±1 km

    Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    Get PDF
    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM)

    Plant Modelling Framework: software for building and running crop models on the APSIM platform

    Get PDF
    The Plant Modelling Framework (PMF) is a software framework for creating models that represent the plant components of farm system models in the agricultural production system simulator (APSIM). It is the next step in the evolution of generic crop templates for APSIM, building on software and science lessons from past versions and capitalising on new software approaches. The PMF contains a top-level Plant class that provides an interface with the APSIM model environment and controls the other classes in the plant model. Other classes include mid-level Organ, Phenology, Structure and Arbitrator classes that represent specific elements or processes of the crop and sub-classes that the mid-level classes use to represent repeated data structures. It also contains low-level Function classes which represent generic mathematical, logical, procedural or reference code and provide values to the processes carried out by mid-level classes. A plant configuration file specifies which mid-level and Function classes are to be included and how they are to be arranged and parameterised to represent a particular crop model. The PMF has an integrated design environment to allow plant models to be created visually. The aims of the PMF are to maximise code reuse and allow flexibility in the structure of models. Four examples are included to demonstrate the flexibility of application of the PMF; 1. Slurp, a simple model of the water use of a static crop, 2. Oat, an annual grain crop model with detailed growth, development and resource use processes, 3. Lucerne, perennial forage model with detailed growth, development and resource use processes, 4. Wheat, another detailed annual crop model constructed using an alternative set of organ and process classes. These examples show the PMF can be used to develop models of different complexities and allows flexibility in the approach for implementing crop physiology concepts into model set up

    Fermi GBM Observations of Terrestrial Gamma Flashes

    Get PDF
    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positron

    Thunderstorm and Lightning Characteristics Associated With Sprites in Brazil

    Get PDF
    A study of the thunderstorm and cloud-ground lightning characteristics associated with sprite events observed in Brazil is presented. The study is based on ground and aircraft sprite observations with high sensitivity intensified CCD cameras of six different thunderstorms, GOES satellite infrared images, radar and lightning network data. A total of eighteen transient optical events were recorded at three different days in 2002 and 2003, sixteen of which exhibited vertical structures typically associated with sprites. Four thunderstorms were associated with two different cold fronts, one with a Mesoscale Convective System, and one was a local isolated thunderstorm. The sprites occurred during time periods when the percentage of positive flashes was higher than the average percentage for the storm lifetime. The lightning associated with the sprite events was all positive flashes with a mean peak current higher than the mean value for all flashes in the storms

    Fermi GBM observations of Terrestrial Gamma Flashes

    Get PDF
    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds

    What Can Geolocated Sferics Tell Us About Terrestrial Gamma-Ray Flashes?

    Get PDF
    The Fermi Gamma-ray Burst Monitor (GBM) has been detecting TGFs with increasing sensitivity over the past two years, owing to changes in flight software that have lowered its threshold for triggering and, recently, allowed a search for TGFs weaker than those which would cause an onboard trigger. Associations between TGFs detected in the first 18 months of operation and sferics detected using the World Wide Lightning Location Network (WWLLN) show that TGF peaks and lightning discharges are simultaneous to within tens of microseconds, and that GBM triggered on TGFs that occurred up to a distance of 300 km from the sub-spacecraft position. In the work presented here, we look for associations between TGFs detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and WWLLN sferics over the same 18 months, and we compare the match rate and detection horizon of the two instruments. We also look for associations between WWLLN sferics and more recent GBM TGFs, both triggered events and weaker TGFs uncovered in our untriggered search. We discuss whether in this new mode, GBM is detecting TGFs that are more distant from the sub-spacecraft point than 300 km, or whether the weaker TGFs are instead indicative of a luminosity distribution, either because the weaker ones originate deeper in the atmosphere or because they are intrinsically dimmer
    • …
    corecore