1,460 research outputs found

    On the physics behind the form factor ratio μpGEp(Q2)/GMp(Q2)\mu_p G_E^p (Q^2) / G_M^p (Q^2)

    Full text link
    We point out that there exist two natural definitions of the nucleon magnetization densities : the density ρMK(r)\rho_M^K (r) introduced in Kelly's phenomenological analysis and theoretically more standard one ρM(r)\rho_M (r). We can derive an explicit analytical relation between them, although Kelly's density is more useful to disentangle the physical origin of the different Q2Q^2 dependence of the Sachs electric and magnetic form factors of the nucleon. We evaluate both of ρM(r)\rho_M (r) and ρMK(r)\rho_M^K (r) as well as the charge density ρch(r)\rho_{ch}(r) of the proton within the framework of the chiral quark soliton model, to find a noticeable qualitative difference between ρch(r)\rho_{ch}(r) and ρMK(r)\rho_M^K (r), which is just consistent with Kelly's result obtained from the empirical information on the Sachs electric and magnetic form factors of the proton.Comment: 12 pages, 5 figures. version to appear in J. Phys. G.: Nucl. Part. Phy

    Field dynamics and kink-antikink production in rapidly expanding systems

    Full text link
    Field dynamics in a rapidly expanding system is investigated by transforming from space-time to the rapidity - proper-time frame. The proper-time dependence of different contributions to the total energy is established. For systems characterized by a finite momentum cut-off, a freeze-out time can be defined after which the field propagation in rapidity space ends and the system decays into decoupled solitons, antisolitons and local vacuum fluctuations. Numerical simulations of field evolutions on a lattice for the (1+1)-dimensional Φ4\Phi^4 model illustrate the general results and show that the freeze-out time and average multiplicities of kinks (plus antikinks) produced in this 'phase transition' can be obtained from simple averages over the initial ensemble of field configurations. An extension to explicitly include additional dissipation is discussed. The validity of an adiabatic approximation for the case of an overdamped system is investigated. The (3+1)-dimensional generalization may serve as model for baryon-antibaryon production after heavy-ion collisions.Comment: 18 pages, 7 figures. Two references added. New subsection III.E added. Final version accepted for publication in PR

    ENERGY TRANSFER IN TRIMERIC C-PHYCOCYANIN STUDIED BY PICOSECOND FLUORESCENCE KINETICS

    Get PDF
    The excited state kinetics of trimeric C-phycocyanin from Mastigocladus laminosus has been measured as a function of the emission and excitation wavelength by the single-photon timing technique with picosecond resolution and simultaneous data analysis. A fast decay component of 22 ps (C-phycocyanin with linker peptides) and 36 ps (C-phycocyanin lacking linker peptides) is attributed to efficient energy transfer from sensitizing to fluorescing chromophores. At long detection wavelengths the fast decay components are found to turn into a rise term. This finding further corroborates the concept of intramolecular energy transfer. Previous reports on the conformational heterogeneity of the chromophores and/or proteins in C-phycocyanin are confirmed. Our data also provide indications for the importance of the uncoloured linker peptides for this heterogeneity

    Octave Spanning Frequency Comb on a Chip

    Full text link
    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks

    Absolute velocity measurements in sunspot umbrae

    Full text link
    In sunspot umbrae, convection is largely suppressed by the strong magnetic field. Previous measurements reported on negligible convective flows in umbral cores. Based on this, numerous studies have taken the umbra as zero reference to calculate Doppler velocities of the ambient active region. To clarify the amount of convective motion in the darkest part of umbrae, we directly measured Doppler velocities with an unprecedented accuracy and precision. We performed spectroscopic observations of sunspot umbrae with the Laser Absolute Reference Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the high-resolution spectrograph and absolute wavelength positions. A thorough spectral calibration, including the measurement of the reference wavelength, yielded Doppler shifts of the spectral line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured Doppler shifts are a composition of umbral convection and magneto-acoustic waves. For the analysis of convective shifts, we temporally average each sequence to reduce the superimposed wave signal. Compared to convective blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a strongly reduced convective blueshifts around -30 m s-1. {W}e find that the velocity in a sunspot umbra correlates significantly with the magnetic field strength, but also with the umbral temperature defining the depth of the titanium line. The vertical upward motion decreases with increasing field strength. Extrapolating the linear approximation to zero magnetic field reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as a zero velocity reference for the calculation of photospheric Dopplergrams can imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure

    Optical frequency comb generation from a monolithic microresonator

    Full text link
    Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing8 and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation while to date frequency combs are generated utilizing the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here, we report an entirely novel approach in which equally spaced frequency markers are generated from a continuous wave (CW) pump laser of a known frequency interacting with the modes of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain enables the generation of discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio

    Cool Stars and Space Weather

    Full text link
    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides

    DCC Dynamics in (2+1)D-O(3) model

    Get PDF
    The dynamics of symmetry-breaking after a quench is numerically simulated on a lattice for the (2+1)-dimensional O(3) model. In addition to the standard sigma-model with temperature-dependent Phi^4-potential the energy functional includes a four-derivative current-current coupling to stabilize the size of the emerging extended topological textures. The total winding number can be conserved by constraint. As a model for the chiral phase transition during the cooling phase after a hadronic collision this allows to investigate the interference of 'baryon-antibaryon' production with the developing disoriented aligned domains. The growth of angular correlations, condensate, average orientation is studied in dependence of texture size, quench rate, symmetry breaking. The classical dissipative dynamics determines the rate of energy emitted from the relaxing source for each component of the 3-vector field which provides a possible signature for domains of Disoriented Chiral Condensate. We find that the 'pions' are emitted in two distinct pulses; for sufficiently small lattice size the second one carries the DCC signal, but it is strongly suppressed as compared to simultaneous 'sigma'-meson emission. We compare the resulting anomalies in the distributions of DCC pions with probabilities derived within the commonly used coherent state formalism.Comment: 27 pages, 17 figures; several minor insertions in the text; two references adde
    corecore