1,300 research outputs found

    Isophorcarubin

    Get PDF

    ENERGY TRANSFER IN TRIMERIC C-PHYCOCYANIN STUDIED BY PICOSECOND FLUORESCENCE KINETICS

    Get PDF
    The excited state kinetics of trimeric C-phycocyanin from Mastigocladus laminosus has been measured as a function of the emission and excitation wavelength by the single-photon timing technique with picosecond resolution and simultaneous data analysis. A fast decay component of 22 ps (C-phycocyanin with linker peptides) and 36 ps (C-phycocyanin lacking linker peptides) is attributed to efficient energy transfer from sensitizing to fluorescing chromophores. At long detection wavelengths the fast decay components are found to turn into a rise term. This finding further corroborates the concept of intramolecular energy transfer. Previous reports on the conformational heterogeneity of the chromophores and/or proteins in C-phycocyanin are confirmed. Our data also provide indications for the importance of the uncoloured linker peptides for this heterogeneity

    High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator

    Full text link
    We report on a high-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator with a stabilized repetition rate at 250 MHz. The mid-infrared frequency comb is produced through difference frequency generation in a periodically poled MgO-doped lithium niobate crystal. The output power is about 120 mW with a pulse duration of about 80 fs, and spectrum coverage from 2.9 to 3.6 um. The coherence properties of the produced high-power broadband mid-infrared frequency comb are maintained, which was verified by heterodyne measurements. As the first application, the spectrum of a ~200 ppm methane-air mixture in a short 20 cm glass cell at ambient atmospheric pressure and temperature was measured.Comment: 3 pages, 5 figure

    Optical frequency comb generation from a monolithic microresonator

    Full text link
    Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing8 and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation while to date frequency combs are generated utilizing the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here, we report an entirely novel approach in which equally spaced frequency markers are generated from a continuous wave (CW) pump laser of a known frequency interacting with the modes of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain enables the generation of discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio

    Cool Stars and Space Weather

    Full text link
    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur

    BILIPROTEINS FROM THE BUTTERFLY Pieris brassicae STUDIED BY TIME-RESOLVED FLUORESCENCE AND COHERENT ANTI-STOKES RAMAN SPECTROSCOPY

    Get PDF
    The fluorescence decay time of the biliverdin IX7 chromophore present in biliproteins isolated from Pieris brassicae is determined to be 44 ± 3 ps. This value suggests a cyclic helical chromophore structure. The vibrational frequencies determined by CARS-spectroscopy are compared with those of model compounds. The data confirm that the chromophore in the protein-bound state adopts a cyclic-helical, flexible conformation

    Precision spectroscopy of the 3s-3p fine structure doublet in Mg+

    Get PDF
    We apply a recently demonstrated method for precision spectroscopy on strong transitions in trapped ions to measure both fine structure components of the 3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference data for transition frequencies, isotope shifts and fine structure splittings that are in particular useful for comparison with quasar absorption spectra, which test possible space-time variations of the fine structure constant. The measurement accuracy improves previous literature values, when existing, by more than two orders of magnitude

    Orthogonal Polynomial Projectors for the Projector Augmented Wave Method of Electronic Structure Calculations

    Get PDF
    The projector augmented wave (PAW) method for electronic structure calculations developed by Blochl [Phys. Rev. B 50, 17 953 (1994)] has been very successfully used for density functional studies. It has the numerical advantages of pseudopotential techniques while retaining the physics of all-electron formalisms. We describe a method for generating the set of atom-centered projector and basis functions that are needed for the PAW method. This scheme chooses the shapes of the projector functions from a set of orthogonal polynomials multiplied by a localizing weight factor. Numerical benefits of the scheme result from having direct control of the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate ‘‘ghost state’’ problems, which can plague calculations of this kind. Electronic density of states results are presented for the mineral powellite (CaMoO4)

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides
    • …
    corecore