2,004 research outputs found

    Observations of shallow convective clouds generated by solar heating of dark smoke plumes

    Get PDF
    The SEVIRI instrument on the Meteosat Second Generation satellite with both fine spatial and temporal resolution allows to detect and follow the dynamics of fast developing meteorological events like spreading smoke plumes and the lifecycles of convective clouds. Smoke plumes have the ability to change the atmospheric heat content due to absorption and reduced reflection of solar radiation. By these means they can trigger formation of shallow convective clouds at their edge. A heavy smoke plume emerging from burning Lebanese oil tanks and spreading over adjacent deserts on 17 July 2006 has been observed as an example of such an effect. This study suggests a physical explanation of the observed convection along the edge of the smoke plume, namely the strong thermal contrast resulting from solar heating of the smoke layer

    Synergetic aerosol retrieval from SCIAMACHY and AATSR onboard ENVISAT

    No full text
    International audienceThe synergetic aerosol retrieval method SYNAER (Holzer-Popp et al., 2002a) has been extended to the use of ENVISAT measurements. It exploits the complementary information of a radiometer and a spectrometer onboard one satellite platform to extract aerosol optical depth (AOD) and speciation (as choice from a representative set of pre-defined mixtures of water-soluble, soot, mineral dust, and sea salt components). SYNAER consists of two retrieval steps. In the first step the radiometer is used to do accurate cloud screening, and subsequently to quantify the aerosol optical depth (AOD) at 550 nm and spectral surface brightness through a dark field technique. In the second step the spectrometer is applied to choose the most plausible aerosol type through a least square fit of the measured spectrum with simulated spectra using the AOD and surface brightness retrieved in the first step. This method was developed and a first case study evaluation against few (15) multi-spectral ground-based AERONET sun photometer observations was conducted with a sensor pair (ATSR-2 and GOME) onboard ERS-2. However, due to instrumental limitations the coverage of SYNAER/ERS-2 and the AERONET network in 1997/98 is very sparse and thus only few coincidences with AERONET were found. Therefore, SYNAER was transferred to similar sensors AATSR and SCIAMACHY onboard ENVISAT. While transferring to the new sensor pair a thorough evaluation of the synergetic methodology and its information content has been conducted, which led to significant improvements in the methodology: an update of the aerosol model, an improved cloud detection, and an enhanced dark field albedo characterization. This paper describes the information content analysis and these improvements in detail and presents first results of applying the SYNAER methodology to AATSR and SCIAMACHY

    Decay of scalar turbulence revisited

    Full text link
    We demonstrate that at long times the rate of passive scalar decay in a turbulent, or simply chaotic, flow is dominated by regions (in real space or in inverse space) where mixing is less efficient. We examine two situations. The first is of a spatially homogeneous stationary turbulent flow with both viscous and inertial scales present. It is shown that at large times scalar fluctuations decay algebraically in time at all spatial scales (particularly in the viscous range, where the velocity is smooth). The second example explains chaotic stationary flow in a disk/pipe. The boundary region of the flow controls the long-time decay, which is algebraic at some transient times, but becomes exponential, with the decay rate dependent on the scalar diffusion coefficient, at longer times.Comment: 4 pages, no figure

    Asymptotic Sign-Solvability, Multiple Objective Linear Programming, and The Nonsubstitution Theorem

    Get PDF
    In this paper we investigate the asymptotic stability of dynamic, multiple-objective linear programs. In particular, we show that a generalization of the optimal partition stabilizes for a large class of data functions. This result is based on a new theorem about asymptotic sign-solvable systems. The stability properties of the generalized optimal partition are used to extend a dynamic version of the Nonsubstitution Theorem

    Generation of 1.5 Million Beam Loss Threshold Values

    Get PDF
    CERN's Large Hadron Collider will store an unprecedented amount of energy in its circulating beams. Beamloss monitoring (BLM) is, therefore, critical for machine protection. It must protect against the consequences (equipment damage, quenches of superconducting magnets) of excessive beam loss. About 4000 monitors will be installed at critical loss locations. Each monitor has 384 beam abort thresholds associated; for 12 integrated loss durations (40μ40\mus to 83 s) and 32 energies (450GeV to 7 TeV). Depending on monitor location, the thresholds vary by orders of magnitude. For simplification, the monitors are grouped in 'families'. Monitors of one family protect similar magnets against equivalent loss scenarios. Therefore, they are given the same thresholds. The start-up calibration of the BLM system is required to be within a factor of five in accuracy; and the final accuracy should be a factor of two. Simulations (backed-up by control measurements) determine the relation between the BLM signal, the deposited energy and the critical energy deposition for damage or quench (temperature of the coil). The paper presents the strategy of determining 1.5 million threshold values

    A comparative investigation of the efficacy of CO2 and high power diode lasers for the forming of EN3 mild steel sheets

    Get PDF
    A comparative investigation of the effectiveness of a high power diode laser (HPDL) and a CO2 laser for the forming of thin section EN3 mild steel sheet has been conducted. The buckling mechanism was identified as the laser forming mechanism responsible for the induced bending. For both lasers it was found that the induced bending angles increased with an increasing number of irradiations and high laser powers, whilst decreasing as the traverse speed was increased. Also, it was apparent from the experimental results that the laser bending angle was only linearly proportional to the number of irradiations when the latter was small due to local material thickening along the bend edge with a high number of irradiations. Owing to the mild steel’s greater beam absorption at the HPDL wavelength, larger bending angles were induced when using the HPDL. However, under certain conditions the performance of the CO2 laser in terms of induced bending angle was seen to approach that of the HPDL. Nevertheless, similar results between the two lasers were only achieved with increasing irradiations, thus it was concluded that the efficacy of the HPDL was higher than that of the CO2 laser insofar as it was more efficient. From graphical results and the employment of an analytical procedure, the laser line energy range in which accurate control of the HPDL bending of the mild steel sheets could be exercised efficiently was found to be 53 J mm-1 < P/v < 78 J mm-1, whilst for the CO2 laser the range was 61 J mm-1 < P/v < 85 J mm-1

    Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    Get PDF
    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characterized by two distinct regions, an outer wind launched beyond four white dwarf radii from the rotation axis, and an inner wind launched within this radius. The inner wind is very steep, up to 80 degrees with the disk plane, while the outer wind has a typical tilt of 60 degrees. In both cases the ray dispersion is small. We, therefore, confirm the bi-conical geometry of disk winds as suggested by observations and kinematical modeling. The wind collimation angle appears to be robust and depends only on the disk temperature stratification. The flow critical points lie high above the disk for the inner wind, but close to the disk photosphere for the outer wind. Comparison with existing kinematical and dynamical models is provided. Mass loss rates from the disk as well as wind velocity laws are discussed in a subsequent paper.Comment: 21 pages, 10 Postscript figures; available also from http://www.pa.uky.edu/~shlosman/publ.html. Astrophysical Journal, submitte

    MRI plaque imaging reveals high-risk carotid plaques especially in diabetic patients irrespective of the degree of stenosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plaque imaging based on magnetic resonance imaging (MRI) represents a new modality for risk assessment in atherosclerosis. It allows classification of carotid plaques in high-risk and low-risk lesion types (I-VIII). Type 2 diabetes mellitus (DM 2) represents a known risk factor for atherosclerosis, but its specific influence on plaque vulnerability is not fully understood. This study investigates whether MRI-plaque imaging can reveal differences in carotid plaque features of diabetic patients compared to nondiabetics.</p> <p>Methods</p> <p>191 patients with moderate to high-grade carotid artery stenosis were enrolled after written informed consent was obtained. Each patient underwent MRI-plaque imaging using a 1.5-T scanner with phased-array carotid coils. The carotid plaques were classified as lesion types I-VIII according to the MRI-modified AHA criteria. For 36 patients histology data was available.</p> <p>Results</p> <p>Eleven patients were excluded because of insufficient MR-image quality. DM 2 was diagnosed in 51 patients (28.3%). Concordance between histology and MRI-classification was 91.7% (33/36) and showed a Cohen's kappa value of 0.81 with a 95% CI of 0.98-1.15. MRI-defined high-risk lesion types were overrepresented in diabetic patients (n = 29; 56.8%). Multiple logistic regression analysis revealed association between DM 2 and MRI-defined high-risk lesion types (OR 2.59; 95% CI [1.15-5.81]), independent of the degree of stenosis.</p> <p>Conclusion</p> <p>DM 2 seems to represent a predictor for the development of vulnerable carotid plaques irrespective of the degree of stenosis and other risk factors. MRI-plaque imaging represents a new tool for risk stratification of diabetic patients.</p> <p>See Commentary: <url>http://www.biomedcentral.com/1741-7015/8/78/abstract</url></p
    corecore