48 research outputs found

    Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny

    Get PDF
    Magmatic arcs are terrestrial environments where lithospheric cycling and recycling of metals and volatiles is enhanced. However, the first-order mechanism permitting the episodic fluxing of these elements from the mantle through to the outer Earth’s spheres has been elusive. To address this knowledge gap, we focus on the textural and minero-chemical characteristics of metal-rich magmatic sulfides hosted in amphibole-olivine-pyroxene cumulates in the lowermost crust. We show that in cumulates that were subject to increasing temperature due to prolonged mafic magmatism, which only occurs episodically during the complex evolution of any magmatic arc, Cu-Au-rich sulfide can exist as liquid while Ni-Fe rich sulfide occurs as a solid phase. This scenario occurs within a ‘Goldilocks’ temperature zone at ~1100–1200 °C, typical of the base of the crust in arcs, which permits episodic fractionation and mobilisation of Cu-Au-rich sulfide liquid into permeable melt networks that may ascend through the lithosphere providing metals for porphyry and epithermal ore deposits

    Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland

    Get PDF
    The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu–PGE–Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190–700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu–Ni–PGE sulfides which require very high R factors, and settling of sulfide liquids

    Alpha shapes: Determining 3D shape complexity across morphologically diverse structures

    Get PDF
    Background. Following recent advances in bioimaging, high-resolution 3D models of biological structures are now generated rapidly and at low-cost. To utilise this data to address evolutionary and ecological questions, an array of tools has been developed to conduct 3D shape analysis and quantify topographic complexity. Here we focus particularly on shape techniques applied to irregular-shaped objects lacking clear homologous landmarks, and propose the new ‘alpha-shapes’ method for quantifying 3D shape complexity. Methods. We apply alpha-shapes to quantify shape complexity in the mammalian baculum as an example of a morphologically disparate structure. Micro- computed-tomography (μCT) scans of bacula were conducted. Bacula were binarised and converted into point clouds. Following application of a scaling factor to account for absolute differences in size, a suite of alpha-shapes was fitted to each specimen. An alpha shape is a formed from a subcomplex of the Delaunay triangulation of a given set of points, and ranges in refinement from a very coarse mesh (approximating convex hulls) to a very fine fit. ‘Optimal’ alpha was defined as the degree of refinement necessary in order for alpha-shape volume to equal CT voxel volume, and was taken as a metric of overall shape ‘complexity’. Results Our results show that alpha-shapes can be used to quantify interspecific variation in shape ‘complexity’ within biological structures of disparate geometry. The ‘stepped’ nature of alpha curves is informative with regards to the contribution of specific morphological features to overall shape ‘complexity’. Alpha-shapes agrees with other measures of topographic complexity (dissection index, Dirichlet normal energy) in identifying ursid bacula as having low shape complexity. However, alpha-shapes estimates mustelid bacula as possessing the highest topographic complexity, contrasting with other shape metrics. 3D fractal dimension is found to be an inappropriate metric of complexity when applied to bacula. Conclusions. The alpha-shapes methodology can be used to calculate ‘optimal’ alpha refinement as a proxy for shape ‘complexity’ without identifying landmarks. The implementation of alpha-shapes is straightforward, and is automated to process large datasets quickly. Beyond genital shape, we consider the alpha-shapes technique to hold considerable promise for new applications across evolutionary, ecological and palaeoecological disciplines

    A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes

    No full text
    Pyrite is one of the most common minerals in many precious and base metal hydrothermal ore deposits and is an important host to a range of trace elements including Au and Co and the semi-metals As, Se, Sb, Te and Bi. As such, in many hydrothermal ore deposits, where pyrite is the dominant sulphide phase, it can represent a major repository for these elements. Furthermore, the concentrations and ratios of Au, As and Co in pyrite have been used to infer key ore-forming processes. However, the mechanisms controlling the distribution of Te and Se in pyrite are less well understood. Here we compare the Te and Se contents of pyrite from a global dataset of Carlin-type, orogenic Au, and porphyry-epithermal deposits to investigate: (1) the potential of pyrite to be a major repository for these elements; and (2) whether Te and Se provide insights into key ore-forming processes. Pyrite from Carlin-type, low-sulphidation and alkaline igneous rock-hosted epithermal systems is enriched in Te (and Se) compared to pyrite from high-sulphidation epithermal and porphyry Cu deposits. Orogenic Au pyrite is characterised by intermediate Te and Se contents. There is an upper solubility limit for Te as a function of As in pyrite, similar to that established for Au by ; and this can be used to identify Te present as telluride inclusions, which are common in some epithermal-porphyry and orogenic Au deposits. Physicochemical fluid parameters, such as pH, redox and temperature, as well as crystal-chemistry control the incorporation and concentration of Se and Te in pyrite. Neutral to alkaline fluids have the ability to effectively mobilise and transport Te. Fluid boiling in porphyry-epithermal systems, as well as wall rock sulphidation and oxidation in Carlin-type (and orogenic Au) deposits can effectively precipitate Te in association with pyrite and Au. In contrast, Se concentrations in pyrite apparently vary systematically in response to changes in fluid temperature, irrespective of pH and fO 2 . Hence, we propose that the Se contents of pyrite may be used asa new geo-thermometer for hydrothermal ore deposits. Furthermore, the comparison of bulk ore and pyrite chemistry indicates that pyrite represents the major host for Te and Se in Carlin-type and some epithermal systems, and thus pyrite can be considered to be of economic interest asa potential source for these elements

    Orogenic gold mineralization hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, east Greenland

    No full text
    A gold-bearing quartz vein system has been identified in Archaean basement rocks at Sortekap in the Kangerlussuaq region of east Greenland, 35 km north–northeast of the Skaergaard Intrusion. This constitutes the first recorded occurrence of Au mineralisation in the metamorphic basement rocks of east Greenland. The mineralisation can be classified as orogenic style, quartz vein-hosted Au mineralisation. Two vein types have been identified based on their alteration styles and the presence of Au mineralisation. Mineralised type 1 veins occur within sheared supracrustal units and are hosted by garnet-bearing amphibolites, with associated felsic and ultramafic intrusions. Gold is present as native Au and Au-rich electrum together with arsenopyrite and minor pyrite and chalcopyrite in thin alteration selvages in the immediate wall rocks. The alteration assemblage of actinolite-clinozoisite-muscovite-titanite-scheelite-arsenopyrite-pyrite is considered to be a greenschist facies assemblage. The timing of mineralisation is therefore interpreted as being later and separate event to the peak amphibolite facies metamorphism of the host rocks. Type 2 quartz veins are barren of mineralisation, lack significant alteration of the wall rocks and are considered to be later stage. Fluid inclusion microthermometry of the quartz reveals three separate fluids, including a high temperature (T <sub>h</sub>  = 300–350 °C), H<sub>2</sub>O–CO<sub>2</sub>–CH<sub>4</sub> fluid present only in type 1 veins that in interpreted to be responsible for the main stage of Au deposition and sulphidic wall rock alteration. It is likely that the carbonic fluids were actually trapped at temperatures closer to 400 °C. Two other fluids were identified within both vein types, which comprise low temperature (100–200 °C) brines, with salinities of 13–25 wt% eq. NaCl and at least one generation of low salinity aqueous fluids. The sources and timings of the secondary fluids are currently equivocal but they may be related to the emplacement of Paleogene mafic intrusions. The identification of this occurrence of orogenic-style Au mineralisation has implications for exploration in the underexplored area of east Greenland between 62 and 69° N, where other, similar supracrustal units are known to be present.<p></p&gt

    Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny

    Get PDF
    Magmatic arcs are terrestrial environments where lithospheric cycling and recycling of metals and volatiles is enhanced. However, the first-order mechanism permitting the episodic fluxing of these elements from the mantle through to the outer Earth’s spheres has been elusive. To address this knowledge gap, we focus on the textural and minero-chemical characteristics of metal-rich magmatic sulfides hosted in amphibole-olivine-pyroxene cumulates in the lowermost crust. We show that in cumulates that were subject to increasing temperature due to prolonged mafic magmatism, which only occurs episodically during the complex evolution of any magmatic arc, Cu-Au-rich sulfide can exist as liquid while Ni-Fe rich sulfide occurs as a solid phase. This scenario occurs within a ‘Goldilocks’ temperature zone at ~1100–1200 °C, typical of the base of the crust in arcs, which permits episodic fractionation and mobilisation of Cu-Au-rich sulfide liquid into permeable melt networks that may ascend through the lithosphere providing metals for porphyry and epithermal ore deposits.</p

    Magmatic Cu-Ni-PGE-Au sulfide mineralisation in alkaline igneous systems: An example from the Sron Garbh intrusion, Tyndrum, Scotland

    No full text
    Magmatic sulfide deposits typically occur in ultramafic-mafic systems, however, mineralisation can occur in more intermediate and alkaline magmas. Sron Garbh is an appinite-diorite intrusion emplaced into Dalradian metasediments in the Tyndrum area of Scotland that hosts magmatic Cu-Ni-PGE-Au sulfide mineralisation in the appinitic portion. It is thus an example of magmatic sulfide mineralisation hosted by alkaline rocks, and is the most significantly mineralised appinitic intrusion known in the British Isles. The intrusion is irregularly shaped, with an appinite rim, comprising amphibole cumulates classed as vogesites. The central portion of the intrusion is comprised of unmineralised, but pyrite-bearing, diorites. Both appinites and diorites have similar trace element geochemistry that suggests the diorite is a more fractionated differentiate of the appinite from a common source that can be classed with the high Ba-Sr intrusions of the Scottish Caledonides. Mineralisation is present as a disseminated, primary chalcopyrite-pyrite-PGM assemblage and a blebby, pyrite-chalcopyrite assemblage with significant Co-As-rich pyrite. Both assemblages contain minor millerite and Ni-Co-As-sulfides. The mineralisation is Cu-, PPGE-, and Au-rich and IPGE-poor and the platinum group mineral assemblage is overwhelmingly dominated by Pd minerals; however, the bulk rock Pt/Pd ratio is around 0.8. Laser ablation analysis of the sulfides reveals that pyrite and the Ni-Co-sulfides are the primary host for Pt, which is present in solid solution in concentrations of up to 22 ppm in pyrite. Good correlations between all base and precious metals indicate very little hydrothermal remobilisation of metals despite some evidence of secondary pyrite and PGM. Sulfur isotope data indicate some crustal S in the magmatic sulfide assemblages. The source of this is unlikely to have been the local quartzites, but S-rich Dalradian sediments present at depth. The generation of magmatic Cu-Ni-PGE-Au mineralisation at Sron Garbh can be attributed to post-collisional slab drop off that allowed hydrous, low-degree partial melting to take place that produced a Cu-PPGE-Au-enriched melt, which ascended through the crust, assimilating crustal S from the Dalradian sediments. The presence of a number of PGE-enriched sulfide occurrences in appinitic intrusions across the Scottish Caledonides indicates that the region contains certain features that make it more prospective than other alkaline provinces worldwide, which may be linked the post-Caledonian slab drop off event. We propose that the incongruent melting of pre-existing magmatic sulfides or ‘refertilised’ mantle in low-degree partial melts can produce characteristically fractionated, Cu-PPGE-Au-semi metal bearing, hydrous, alkali melts, which, if they undergo sulfide saturation, have the potential to produce alkaline-hosted magmatic sulfide deposits
    corecore