99 research outputs found

    Editorial : Recent advances in the ecology and evolution of the Bathyergidae

    Get PDF
    No abstract available.http://frontiersin.org/Ecology_and_Evolutiondm2022Zoology and Entomolog

    The Mating Pattern of Captive Naked Mole-Rats Is Best Described by a Monogamy Model

    Get PDF
    Naked mole-rats form colonies with a single reproductively active female surrounded by subordinate workers. Workers perform offspring care, construction and defense of the burrow system, and food supply. Such division of labor, called “cooperative breeding,” is strongly associated with the evolution of monogamous mating behavior, as seen in several mammalian lineages. This association is explained by the evolutionary theory of kin selection, according to which a subordinate adult may help to raise other’s offspring if they are in full sibling relationship. In conflict with this theory, the naked mole-rat is widely considered to be polyandrous, based on reports on multiple males contributing to a colony’s progeny. In order to resolve this contrast, we undertook an in-depth microsatellite-based kinship analysis on captive colonies. Four independent colonies comprising a total of 265 animals were genotyped using a panel of 73 newly established microsatellite markers. Our results show that each mole-rat colony contains a single monogamous breeder pair, which translates to a reproductive skew of 100% for both sexes. This finding, also in conjunction with previously published parental data, favors monogamy as the best-fitting model to describe naked mole-rat reproduction patterns. Polyandry or other polygamous reproduction models are disfavored and should be considered as exceptional. Overall, the empirical genetic data are in agreement with the kin selection theory.Peer Reviewe

    High-Resolution Optical Functional Mapping of the Human Somatosensory Cortex

    Get PDF
    Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI) is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI). Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007) and extend them to the homuncular organization of SI. After performing a motor task, eight subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and two discrete foci for vibrotactile stimulation of the first and fifth finger, respectively. The results were co-registered to the individual anatomical brain anatomy (MRI) which confirmed the localization in the expected cortical gyri in four subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation

    Application of decision tools to ethical analysis in biodiversity conservation

    Get PDF
    Achieving ethically responsible decisions is crucial for the success of biodiversity conservation projects. We adapted the ethical matrix, decision tree, and Bateson's cube to assist in the ethical analysis of complex conservation scenarios by structuring these tools so that they can implement the different value dimensions (environmental, social, and animal welfare) involved in conservation ethics. We then applied them to a case study relative to the decision-making process regarding whether or not to continue collecting biomaterial on the oldest of the two remaining northern white rhinoceroses (Ceratotherium simum cottoni), a functionally extinct subspecies of the white rhinoceros. We used the ethical matrix to gather ethical pros and cons and as a starting point for a participatory approach to ethical decision-making. We used decision trees to compare the different options at stake on the basis of a set of ethical desiderata. We used Bateson's cube to establish a threshold of ethical acceptability and model the results of a simple survey. The application of these tools proved to be pivotal in structuring the decision-making process and in helping reach a shared, reasoned, and transparent decision on the best option from an ethical point of view among those available

    Induced pluripotent stem cells and cerebral organoids from the critically endangered Sumatran rhinoceros

    Get PDF
    Less than 80 Sumatran rhinos (SR, Dicerorhinus sumatrensis) are left on earth. Habitat loss and limited breeding possibilities are the greatest threats to the species and lead to a continuous population decline. To stop the erosion of genetic diversity, reintroduction of genetic material is indispensable. However, as the propagation rate of captive breeding is far too low, innovative technologies have to be developed. Induced pluripotent stem cells (iPSCs) are a powerful tool to fight extinction. They give rise to each cell within the body including gametes and provide a unique modality to preserve genetic material across time. Additionally, they enable studying species-specific developmental processes. Here, we generate iPSCs from the last male Malaysian SR Kertam, who died in 2019, and characterize them comprehensively. Differentiation in cells of the three germ layers and cerebral organoids demonstrate their high quality and great potential for supporting the rescue of this critically endangered species

    Mammalian maxilloturbinal evolution does not reflect thermal biology

    Get PDF
    The evolution of endothermy in vertebrates is a major research topic in recent decades that has been tackled by a myriad of research disciplines including paleontology, anatomy, physiology, evolutionary and developmental biology. The ability of most mammals to maintain a relatively constant and high body temperature is considered a key adaptation, enabling them to successfully colonize new habitats and harsh environments. It has been proposed that in mammals the anterior nasal cavity, which houses the maxilloturbinal, plays a pivotal role in body temperature maintenance, via a bony system supporting an epithelium involved in heat and moisture conservation. The presence and the relative size of the maxilloturbinal has been proposed to reflect the endothermic conditions and basal metabolic rate in extinct vertebrates. We show that there is no evidence to relate the origin of endothermy and the development of some turbinal bones by using a comprehensive dataset of µCT-derived maxilloturbinals spanning most mammalian orders. Indeed, we demonstrate that neither corrected basal metabolic rate nor body temperature significantly correlate with the relative surface area of the maxilloturbinal. Instead, we identify important variations in the relative surface area, morpho-anatomy, and complexity of the maxilloturbinal across the mammalian phylogeny and species ecology

    The neonatal southern white rhinoceros ovary contains oogonia in germ cell nests

    Get PDF
    The northern white rhinoceros is functionally extinct with only two females left. Establishing methods to culture ovarian tissues, follicles, and oocytes to generate eggs will support conservation efforts using in vitro embryo production. To the best of our knowledge, this is the first description of the structure and molecular signature of any rhinoceros, more specifically, we describe the neonatal and adult southern white rhinoceros (Ceratotherium simum simum) ovary; the closest relation of the northern white rhinoceros. Interestingly, all ovaries contain follicles despite advanced age. Analysis of the neonate reveals a population of cells molecularly characterised as mitotically active, pluripotent with germ cell properties. These results indicate that unusually, the neonatal ovary still contains oogonia in germ cell nests at birth, providing an opportunity for fertility preservation. Therefore, utilising ovaries from stillborn and adult rhinoceros can provide cells for advanced assisted reproductive technologies and investigating the neonatal ovaries of other endangered species is crucial for conservation

    Macrophages from naked mole-rat possess distinct immunometabolic signatures upon polarization

    Get PDF
    The naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging. In this study gene expression signatures, reactive nitrogen species and cytokine production, as well as metabolic activity of classically (M1) and alternatively (M2) activated NMR bone marrow-derived macrophages (BMDM) were examined. Polarization of NMR macrophages under pro-inflammatory conditions led to expected M1 phenotype characterized by increased pro-inflammatory gene expression, cytokine production and aerobic glycolysis, but paralleled by reduced production of nitric oxide (NO). Under systemic LPS-induced inflammatory conditions NO production also was not detected in NMR blood monocytes. Altogether, our results indicate that NMR macrophages are capable of transcriptional and metabolic reprogramming under polarizing stimuli, however, NMR M1 possesses species-specific signatures as compared to murine M1, implicating distinct adaptations in NMR immune system

    Pup Recruitment in a Eusocial Mammal—Which Factors Influence Early Pup Survival in Naked Mole-Rats?

    No full text
    In eusocial insects, offspring survival strongly depends on the quality and quantity of non-breeders. In contrast, the influence of social factors on offspring survival is more variable in cooperatively breeding mammals since maternal traits also play an important role. This difference between cooperative insects and mammals is generally attributed to the difference in the level of sociality. Examining offspring survival in eusocial mammals should, therefore, clarify to what extent social organization and taxonomic differences determine the relative contribution of non-breeders and maternal effects to offspring survival. Here, we present the first in-depth and long-term study on the influence of individual, maternal, social and environmental characteristics on early offspring survival in a eusocial breeding mammal, the naked mole-rat (Heterocephalus glaber). Similarly to other mammals, pup birth mass and maternal characteristics such as body mass and the number of mammae significantly affected early pup survival. In this eusocial species, the number of non-breeders had a significant influence on early pup survival, but this influence was negative—potentially an artifact of captivity. By contrasting our findings with known determinants of survival in eusocial insects we contribute to a better understanding of the origin and maintenance of eusociality in mammals
    corecore