110 research outputs found

    Universal vortex-state Hall conductivity of YBa2Cu3O7 single crystals with differing correlated disorder

    Get PDF
    The vortex-state Hall conductivity ([sigma][sub]xy) of YBa2Cu3O7 single crystals in the anomalous-sign-reversal region is found to be independent of the density and orientation of the correlated disorder. After the anisotropic-to-isotropic scaling transformation is carried out, a universal scaled Hall conductivity [sigma][bar][sub]xy is obtained as a function of the reduced temperature (T/T[sub]c) and scaled magnetic field strength (H[bar]) for five samples with different densities and orientation of controlled defects. The transport scattering times {tau], derived from applying the model given by Feigel'man et al (Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1995 Pis. Zh. Eksp. Teor. Fiz. 62 811 (Engl. Transl. 1995 JETP Lett. 62 835)) to the universal Hall conductivity [sigma bar](T/T[sub]c, H[bar]), are consistent in magnitude with those derived from other measurements for quasiparticle scattering, and are much smaller than the thermal relaxation time of vortex displacement and than the vortex–defect interaction time. Our experimental results and analyses therefore suggest that the anomalous sign reversal in the vortex-state Hall conductivity is associated with the intrinsic properties of type-II superconductors, rather than extrinsic disorder effects

    Current-driven vortex dynamics in untwinned superconducting single crystals

    Get PDF
    Current-driven vortex dynamics of type-II superconductors in the weak-pinning limit is investigated by quantitatively studying the current-dependent vortex dissipation of an untwinned YBa2Cu3O7 single crystal. For applied current densities (J) substantially larger than the critical current density (Jc), non-linear resistive peaks appear below the thermodynamic first-order vortex-lattice melting transition temperature (Tm), in contrast to the resistive hysteresis in the low-current limit (J < Jc). These resistive peaks are quantitatively analysed in terms of the current-driven coherent and plastic motion of vortex bundles in the vortex-solid phase, and the non-linear current - voltage characteristics are found to be consistent with the collective flux-creep model. The effects of high-density random point defects on the vortex dynamics are also investigated via proton irradiation of the same single crystal. Neither resistive hysteresis at low currents nor peak effects at high currents are found after the irradiation. Furthermore, the current-voltage characteristics within the instrumental resolution become completely ohmic over a wide range of currents and temperatures, despite theoretical predictions of much larger Jc-values for the given experimental variables. This finding suggests that the vortex-glass phase, a theoretically proposed low-temperature vortex state which is stabilized by point disorder and has a vanishing resistivity, may become unstable under applied currents significantly smaller than the theoretically predicted Jc. More investigation appears necessary in order to resolve this puzzling issue

    Thermodynamics of a Heavy Ion-Irradiated Superconductor: the Zero-Field Transition

    Full text link
    Specific heat measurements show that the introduction of amorphous columnar defects considerably affects the transition from the normal to the superconducting state in zero magnetic field. Experimental results are compared to numerical simulations of the 3D XY model for both the pure system and the system containing random columnar disorder. The numerics reproduce the salient features of experiment, showing in particular that the specific heat peak changes from cusp-like to smoothly rounded when columnar defects are added. By considering the specific heat critical exponent alpha, we argue that such behavior is consistent with recent numerical work [Vestergren et al., PRB 70, 054508 (2004)] showing that the introduction of columnar defects changes the universality class of the transition.Comment: 4 pages, 2 figure

    Effects of Controlled Defects on the Vortex-Solid Melting Transition of Y-Ba-Cu-O Single Crystals

    Get PDF
    We report systematic studies of the dc transport properties in proton-irradiated Y-Ba-Cu-O single crystals. We find that the onset of vortex dissipation in moderately irradiated samples is associated with the occurrence of a second-order vortex-solid melting transition. In addition, the decreasing zero-field transition temperature and increasing critical current density with the increasing defects reveal the effects of disorder on reducing the electron mean-free-path and on increasing the pinning density

    Do columnar defects produce bulk pinning?

    Full text link
    From magneto-optical imaging performed on heavy-ion irradiated YBaCuO single crystals, it is found that at fields and temperatures where strong single vortex pinning by individual irradiation-induced amorphous columnar defects is to be expected, vortex motion is limited by the nucleation of vortex kinks at the specimen surface rather than by half-loop nucleation in the bulk. In the material bulk, vortex motion occurs through (easy) kink sliding. Depinning in the bulk determines the screening current only at fields comparable to or larger than the matching field, at which the majority of moving vortices is not trapped by an ion track.Comment: 5 pages, 5 figures, submitted to Physical Review Letter

    Absence of Minimum metallic Conductivity in Gd(3-x)vxS4 at Very Low Temperature and Evidence for a Coulomb Gap

    Get PDF
    Gd(3-x)vxS4 provides a convenient analog of a compensated semiconductor in which, for x≃0.3, the mobility edge can be tuned smoothly through the Fermi energy by the application of a magnetic field. The results of a search for a minimum metallic conductivity demonstrate that, down to T=6 mK, the metal-insulator transition is smooth. In the insulating regime, the temperature dependence of the conductivity was more consistent with the theory of mutual interactions than with the theory of pure localization

    Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects

    Full text link
    We report measurements of the irreversible magnetization M_i of a large number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them exhibit a maximum in M_i when the density of vortices equals the density of tracks, at temperatures above 40K. We show that the observation of these matching field effects is constrained to those crystals where the orientational and pinning energy dispersion of the CD system lies below a certain threshold. The amount of such dispersion is determined by the mass and energy of the irradiation ions, and by the crystal thickness. Time relaxation measurements show that the matching effects are associated with a reduction of the creep rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Vortex-solid melting and depinning in superconducting Y-Ba-Cu-O single crystals irradiated by 3-MeV protons

    Get PDF
    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction

    Evidence of a Bose-glass transition in superconducting YBa2Cu3O7 single crystals with columnar defects

    Get PDF
    Experimental evidence of a Bose-glass transition in the vortex state of YBa2Cu3O7 single crystals with columnar defects along the c axis is manifested by the universal critical exponents ν⊥, ν∥ (≡ζν⊥), and z’ derived from the (d’+1)-dimension critical scaling of the frequency-dependent ac resistivity from 102 to 2.5×106 Hz. The Bose-glass transition temperature (TBG) is found to decrease with the increasing angle (θ) between the applied magnetic field and the c axis. The finding that ζ=ν∥/ν⊥=1.1±0.1<d’=2 suggests an incompressible Bose glass at temperatures below TBG
    • …
    corecore