4 research outputs found

    Quantitative Gadolinium-Free Cardiac Fibrosis Imaging in End Stage Renal Disease Patients Reveals a Longitudinal Correlation with Structural and Functional Decline

    Get PDF
    Patients with end stage renal disease (ESRD) suffer high mortality from arrhythmias linked to fibrosis, but are contraindicated to late gadolinium enhancement magnetic resonance imaging (MRI). We present a quantitative method for gadolinium-free cardiac fibrosis imaging using magnetization transfer (MT) weighted MRI, and probe correlations with widely used surrogate markers including cardiac structure and contractile function in patients with ESRD. In a sub-group of patients who returned for follow-up imaging after one year, we examine the correlation between changes in fibrosis and ventricular structure/function. Quantification of changes in MT revealed significantly greater fibrotic burden in patients with ESRD compared to a healthy age matched control cohort. Ventricular mechanics, including circumferential strain and diastolic strain rate were unchanged in patients with ESRD. No correlation was observed between fibrotic burden and concomitant measures of either circumferential or longitudinal strains or strain rates. However, among patients who returned for follow up examination a strong correlation existed between initial fibrotic burden and subsequent loss of contractile function. Gadolinium-free myocardial fibrosis imaging in patients with ESRD revealed a complex and longitudinal, not contemporary, association between fibrosis and ventricular contractile function

    Alterations of network synchrony after epileptic seizures: An analysis of post-ictal intracranial recordings in pediatric epilepsy patients

    No full text
    ObjectivePost-ictal EEG alterations have been identified in studies of intracranial recordings, but the clinical significance of post-ictal EEG activity is undetermined. The purpose of this study was to examine the relationship between peri-ictal EEG activity, surgical outcome, and extent of seizure propagation in a sample of pediatric epilepsy patients.MethodsIntracranial EEG recordings were obtained from 19 patients (mean age = 11.4 years, range = 3-20 years) with 57 seizures used for analysis (mean = 3.0 seizures per patient). For each seizure, 3-min segments were extracted from adjacent pre-ictal and post-ictal epochs. To compare physiology of the epileptic network between epochs, we calculated the relative delta power (Δ) using discrete Fourier transformation and constructed functional networks based on broadband connectivity (conn). We investigated differences between the pre-ictal (Δpre, connpre) and post-ictal (Δpost, connpost) segments in focal-network (i.e., confined to seizure onset zone) versus distributed-network (i.e., diffuse ictal propagation) seizures.ResultsDistributed-network (DN) seizures exhibited increased post-ictal delta power and global EEG connectivity compared to focal-network (FN) seizures. Following DN seizures, patients with seizure-free outcomes exhibited a 14.7% mean increase in delta power and an 8.3% mean increase in global connectivity compared to pre-ictal baseline, which was dramatically less than values observed among seizure-persistent patients (29.6% and 47.1%, respectively).SignificancePost-ictal differences between DN and FN seizures correlate with post-operative seizure persistence. We hypothesize that post-ictal deactivation of subcortical nuclei recruited during seizure propagation may account for this result while lending insights into mechanisms of post-operative seizure recurrence
    corecore