821 research outputs found

    Effective interactions and shell model studies of heavy tin isotopes

    Full text link
    We calculate the low-lying spectra of heavy tin isotopes from A=120 to A=130 using the 2s1d0g_{7/2}0h_{11/2} shell to define the model space. An effective interaction has been derived using 132Sn as closed core employing perturbative many-body techniques. We start from a nucleon-nucleon potential derived from modern meson exchange models. This potential is in turn renormalized for the given medium, 132Sn, yielding the nuclear reaction matrix, which is then used in perturbation theory to obtain the shell model effective interaction.Comment: 19 pages, Elsevier latex style espart.sty, submitted to Nuclear Physics

    Convergence properties of the effective interaction

    Full text link
    The convergence properties of two perturbative schemes to sum the so-called folded diagrams are critically reviewed, with an emphasis on the intruder state problem. The methods we study are the approaches of Kuo and co-workers and Lee and Suzuki. The suitability of the two schemes for shell-model calculations are discussed.Comment: 10 pages in revtex ver. 3.0. 3 figs can be obtained upon request. Univerisity of Oslo report UiO/PHYS/93-2

    Study of odd-mass N=82 isotones with realistic effective interactions

    Get PDF
    The microscopic quasiparticle-phonon model, MQPM, is used to study the energy spectra of the odd Z=5363Z=53 - 63, N=82 isotones. The results are compared with experimental data, with the extreme quasiparticle-phonon limit and with the results of an unrestricted 2s1d0g7/20h11/22s1d0g_{7/2}0h_{11/2} shell model (SM) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the Q^\hat{Q}-box method whereas for the MQPM the effective interaction is defined by the G-matrix.Comment: Elsevier latex style espart, 26 pages, submitted to Nuclear Physics

    Application of realistic effective interactions to the structure of the Zr isotopes

    Full text link
    We calculate the low-lying spectra of the zirconium isotopes Z=40 with neutron numbers from N=52 to N=60 using the 1p1/20g9/2 proton and 2s1d0g7/20h11/2 neutron sub-shells to define the model space. Effective proton-proton, neutron--neutron and proton-neutron interactions have been derived using 88Sr as closed core and employing perturbative many-body techniques. The starting point is the nucleon-nucleon potential derived from modern meson exchange models. The comprehensive shell-model calculation performed in this work provides a qualitative reproduction of essential properties such as the sub-shell closures in 96Zr and 98Zr.Comment: To appear in Phys Rev C, june 2000, 8 figs, Revtex latex styl

    Generalized seniority scheme in light Sn isotopes

    Get PDF
    The yrast generalized seniority states are compared with the corresponding shell model states for the case of the Sn isotopes 104112^{104-112}Sn. For most of the cases the energies agree within 100 keV and the overlaps of the wave functions are greater than 0.7.Comment: 8 pages, revtex. Submitted to Phys. Rev.

    Extended shell-model calculation for even N=82 isotones with realistic effective interactions

    Get PDF
    The shell model within the 2s1d0g7/20h11/22s1d0g_{7/2}0h_{11/2} shell is applied to calculate nuclear structure properties of the even Z=52 - 62, N=82 isotones. The results are compared with experimental data and with the results of a quasiparticle random-phase approximation (QRPA) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the Q^\hat{Q}-box method whereas for the QRPA the effective interaction is defined by the G-matrix.Comment: 25 pages, Elsevier latex style. Submitted to Nuclear Physics

    Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    Get PDF
    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21,22,23O, focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf7/2p3/2 valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O, which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.Comment: 6 pages, 4 figures, published versio

    Phase transition and selection in a four-species cyclic Lotka-Volterra model

    Full text link
    We study a four species ecological system with cyclic dominance whose individuals are distributed on a square lattice. Randomly chosen individuals migrate to one of the neighboring sites if it is empty or invade this site if occupied by their prey. The cyclic dominance maintains the coexistence of all the four species if the concentration of vacant sites is lower than a threshold value. Above the treshold, a symmetry breaking ordering occurs via growing domains containing only two neutral species inside. These two neutral species can protect each other from the external invaders (predators) and extend their common territory. According to our Monte Carlo simulations the observed phase transition is equivalent to those found in spreading models with two equivalent absorbing states although the present model has continuous sets of absorbing states with different portions of the two neutral species. The selection mechanism yielding symmetric phases is related to the domain growth process whith wide boundaries where the four species coexist.Comment: 4 pages, 5 figure
    corecore