1,484 research outputs found

    Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit.

    Get PDF
    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.Medical Research Council (MRC); Biotechnology and Biological Sciences Research Council (BBSRC); European Union; Academy of Finland (to H.M.C.). Funding for open access charge: MRC

    Reproducibility of visit-to-visit variability of blood pressure measured as part of routine clinical care

    Get PDF
    Objectives: Secondary analysis of clinical trial data suggests visit-to-visit variability (VVV) of blood pressure is strongly associated with the incidence of cardiovascular disease. Measurement of blood pressure in usual practice settings may be subject to substantial error, calling into question the value of VVV in real-world settings. Methods: We analyzed data on adults of at least 65 years of age with diagnosed hypertension who were taking antihypertensive medication from the Cohort Study of Medication Adherence among Older Adults (n = 772 with 14 or more blood pressure measurements). All blood pressure measurements, taken as part of routine outpatient care over a median of 2.8 years, were abstracted from patients’ medical charts. Results: Using each participant's first seven SBP measurements, the mean intraindividual standard deviation was 13.5 mmHg. The intraclass correlation coefficient for the standard deviation based on the first seven and second seven SBP measurements was 0.28 [95% confidence interval (CI) 0.20–0.34]. Individuals in the highest quintile of standard deviation of SBP based on their first seven measurements were more likely to be in the highest quintile of VVV using their second seven measurements (observed/expected ratio = 1.71, 95% CI 1.29–2.22). Results were similar for other metrics of VVV. The intraclass correlation coefficient was lower for DBP than SBP. Conclusion: These data suggest VVV of SBP measured in a real-world setting is not random. Future studies are needed to assess the prognostic value of VVV of SBP assessed in routine clinical practice.visit-to-visit variabilit

    Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Get PDF
    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); Intramural program of the National Institutes of Health, National Heart, Lung and Blood Institute (to K.N.); Academy of Finland (to H.M.C.). Funding for open access charge: MRC

    Actin and myosin contribute to mammalian mitochondrial DNA maintenance.

    Get PDF
    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance.Medical Research Council; the European Union; the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development and National Heart; Lung and Blood Institute; National Institutes of Health and grants [CMRPG360491-2, 380651, NSC 97-2321-B-182A-002-MY2] from the Chang Gung Memorial Hospital, Lin-Kou, Taiwan (to C.C.M.). Funding for open access charge: Medical Research Council

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Colorectal Cancer Video for the Deaf Community: A Randomized Control Trial

    Get PDF
    The Deaf community experiences multiple barriers to accessing cancer information. Deaf participants (n = 144) were randomly assigned to view a colorectal cancer education video or another program in American Sign Language. They completed surveys pre- and post-intervention and at 2 months post-intervention. By using a crossover model, control group participants were offered the option of seeing the intervention video. The experimental group gained and retained significantly more colorectal cancer knowledge than the control group, and the control group demonstrated the greatest knowledge gain after crossing into the experimental arm. This video effectively informed the Deaf community about colorectal cancer

    Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Get PDF
    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining

    Predicting Impaired Extinction of Traumatic Memory and Elevated Startle

    Get PDF
    Emotionally traumatic experiences can lead to debilitating anxiety disorders, such as phobias and Post-Traumatic Stress Disorder (PTSD). Exposure to such experiences, however, is not sufficient to induce pathology, as only up to one quarter of people exposed to such events develop PTSD. These statistics, combined with findings that smaller hippocampal size prior to the trauma is associated with higher risk of developing PTSD, suggest that there are pre-disposing factors for such pathology. Because prospective studies in humans are limited and costly, investigating such pre-dispositions, and thus advancing understanding of the genesis of such pathologies, requires the use of animal models where predispositions are identified before the emotional trauma. Most existing animal models are retrospective: they classify subjects as those with or without a PTSD-like phenotype long after experiencing a traumatic event. Attempts to create prospective animal models have been largely unsuccessful.Here we report that individual predispositions to a PTSD-like phenotype, consisting of impaired rate and magnitude of extinction of an emotionally traumatic event coupled with long-lasting elevation of acoustic startle responses, can be revealed following exposure to a mild stressor, but before experiencing emotional trauma. We compare, in rats, the utility of several classification criteria and report that a combination of criteria based on acoustic startle responses and behavior in an anxiogenic environment is a reliable predictor of a PTSD-like phenotype.There are individual predispositions to developing impaired extinction and elevated acoustic startle that can be identified after exposure to a mildly stressful event, which by itself does not induce such a behavioral phenotype. The model presented here is a valuable tool for studying the etiology and pathophysiology of anxiety disorders and provides a platform for testing behavioral and pharmacological interventions that can reduce the probability of developing pathologic behaviors associated with such disorders
    corecore