11,691 research outputs found

    Expertise with non-speech 'auditory Greebles' recruits speech-sensitive cortical regions

    Get PDF
    Regions of the human temporal lobe show greater activation for speech than for other sounds. These differences may reflect intrinsically specialized domain-specific adaptations for processing speech, or they may be driven by the significant expertise we have in listening to the speech signal. To test the expertise hypothesis, we used a video-game-based paradigm that tacitly trained listeners to categorize acoustically complex, artificial nonlinguistic sounds. Before and after training, we used functional MRI to measure how expertise with these sounds modulated temporal lobe activation. Participantsā€™ ability to explicitly categorize the nonspeech sounds predicted the change in pretraining to posttraining activation in speech-sensitive regions of the left posterior superior temporal sulcus, suggesting that emergent auditory expertise may help drive this functional regionalization. Thus, seemingly domain-specific patterns of neural activation in higher cortical regions may be driven in part by experience-based restructuring of high-dimensional perceptual space

    Groups and semigroups with a one-counter word problem

    Get PDF
    We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear growth function. This provides us with a very strong restriction on the structure of such a semigroup, which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of finitely many one-counter languages if and only if the group is virtually abelian

    Rapid X-ray variability from the Seyfert 1 Galaxy NGC 4051

    Get PDF
    Strong variable X-ray emission from the nearby low luminosity Seyfert 1 galaxy NGC 4051 was discovered during observations with the imaging proportional counter of the Einstein Observatory. During one 2304 second observation, the X-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 seconds was seen during another 968 second observation. Evidence is presented which demonstrates that the X-ray spectrum of NGC 4051 is unusually soft compared to Seyfert 1 galaxies or QSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretion models

    Einstein Observatory solid state spectrometer observations of M87 and the Virgo cluster

    Get PDF
    X-ray observations of the galaxy M87 and of a region in the Virgo cluster displaced 7 minutes from the center of M87 are presented. X-ray spectra are obtained at these two locations with the slid state spectrometer onboard the Einstein Observatory. Emission lines were observed in both locations, indicating the presence of heavy elements at abundances approximately solar (to within a factor of 2). A temperature gradient, T increases from approximately 1.4 keV at the position of M87 to T approximately 3.35 keV 7' away, was detected. There is lower temperature thermal emission at the center of M87 with T approximately 0.6 keV, consistent with models for cooling flows in this cluster. In addition to the thermal emission, a power law component in the spectrum of M87, was detected consistent with that observed by HEAO-1, indicating that this component probably originates in the galaxy itself. The presence of intracluster gas having density approximately .001 cu cm and temperature approximately 30 million K is indicated

    Geometric, aerodynamic, and kinematic characteristics of two twin keel parawings during deployment

    Get PDF
    Flight test data on geometric, aerodynamic, and kinematic characteristics of two twin keel parawings during deploymen

    Reduced regulator dependence of neutron-matter predictions with chiral interactions

    Full text link
    We calculate the energy per particle in infinite neutron matter perturbatively using chiral N3LO two-body potentials plus N2LO three-body forces. The cutoff dependence of the predictions is investigated by employing chiral interactions with different regulators. We find that the inclusion of three-nucleon forces, which are consistent with the applied two-nucleon interaction, leads to a strongly reduced regulator dependence of the results.Comment: 7 pages, 8 figures, 1 table, to be published in Physical Review

    Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    Get PDF
    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium

    A comparative investigation of the efficacy of CO2 and high power diode lasers for the forming of EN3 mild steel sheets

    Get PDF
    A comparative investigation of the effectiveness of a high power diode laser (HPDL) and a CO2 laser for the forming of thin section EN3 mild steel sheet has been conducted. The buckling mechanism was identified as the laser forming mechanism responsible for the induced bending. For both lasers it was found that the induced bending angles increased with an increasing number of irradiations and high laser powers, whilst decreasing as the traverse speed was increased. Also, it was apparent from the experimental results that the laser bending angle was only linearly proportional to the number of irradiations when the latter was small due to local material thickening along the bend edge with a high number of irradiations. Owing to the mild steelā€™s greater beam absorption at the HPDL wavelength, larger bending angles were induced when using the HPDL. However, under certain conditions the performance of the CO2 laser in terms of induced bending angle was seen to approach that of the HPDL. Nevertheless, similar results between the two lasers were only achieved with increasing irradiations, thus it was concluded that the efficacy of the HPDL was higher than that of the CO2 laser insofar as it was more efficient. From graphical results and the employment of an analytical procedure, the laser line energy range in which accurate control of the HPDL bending of the mild steel sheets could be exercised efficiently was found to be 53 J mm-1 < P/v < 78 J mm-1, whilst for the CO2 laser the range was 61 J mm-1 < P/v < 85 J mm-1

    Low-momentum ring diagrams of neutron matter at and near the unitary limit

    Full text link
    We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various 1S0^1S_0 scattering lengths such as as=āˆ’12070fma_s=-12070fm and +21fm+21fm are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding asa_s-equivalent low-momentum potentials Vlowāˆ’kV_{low-k}, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy E0E_0 of neutron matter for various scattering lengths. At the limit of asā†’Ā±āˆža_s\to \pm \infty, our calculated ratio of E0E_0 to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with Vlowāˆ’kV_{low-k} and those with GG-matrix interactions are compared.Comment: 9 pages, 7 figure
    • ā€¦
    corecore