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Regions of the human temporal lobe show greater activation for speech than for other sounds. These differences may reflect
intrinsically specialized domain-specific adaptations for processing speech, or they may be driven by the significant expertise we
have in listening to the speech signal. To test the expertise hypothesis, we used a video-game-based paradigm that tacitly trained
listeners to categorize acoustically complex, artificial nonlinguistic sounds. Before and after training, we used functional MRI to
measure how expertise with these sounds modulated temporal lobe activation. Participants’ ability to explicitly categorize the
nonspeech sounds predicted the change in pretraining to posttraining activation in speech-sensitive regions of the left posterior
superior temporal sulcus, suggesting that emergent auditory expertise may help drive this functional regionalization. Thus,
seemingly domain-specific patterns of neural activation in higher cortical regions may be driven in part by experience-based
restructuring of high-dimensional perceptual space.

Introduction
Several brain regions are preferentially activated by specific cate-
gories of stimuli such as faces (Kanwisher et al., 1997; Tsao et al.,
2003) or conspecific vocalizations (Petkov et al., 2008). For in-
stance, in humans, parts of the left superior temporal sulcus
(STS) show greater activation for speech than a range of other
sounds (Belin et al., 2000; Binder et al., 2000; Scott et al., 2000)
including spectrotemporally complex, meaningful nonlinguistic
sounds like thunderclaps and dog barks (Dick et al., 2007). One
possibility is that this preferential activation for speech reflects
left STS specialization for specific acoustical and informational
properties of speech (for review and discussion, see Price et al.,
2005). An alternative hypothesis is that speech-sensitive activa-
tion in left STS reflects life-long expertise with decomposing,
categorizing, and producing complex auditory stimuli (Diehl
et al., 2004; Kuhl, 2004). If the latter hypothesis is true, then
increased activation in left STS should not be specific to speech
but should also emerge as a result of expertise with other
complex auditory stimuli that the listener has learned to
categorize.

Previous studies comparing musicians and nonmusicians

have suggested greater left superior temporal activation for
nonspeech stimuli (Ohnishi et al., 2001), implicating some
role for auditory expertise in left STS. However, such retro-
spective studies are limited in addressing the causal role of
experience, particularly as intrinsic differences between expert
musician and control groups could drive patterns of results.
Only a prospective study (e.g., a training study directly manip-
ulating subjects’ experience with a set of stimuli) can unam-
biguously establish that expertise can drive functional cortical
reorganization in putatively speech-sensitive areas.

To test this expertise hypothesis, we investigated whether
learning artificial, complex nonspeech auditory categories
leads to more speech-like patterns of neural activation. The
paradigm was intended to mimic the learning and develop-
ment of phonetic categories, an ability associated with in-
creases in activation in the left STS (Scott et al., 2000). Partic-
ipants played a space-invaders-style video game involving
visually presented aliens, each associated with a category of
sounds. The auditory stimuli were designed to model some of
the complexity of speech categories without sounding like hu-
man speech. To succeed in the game, participants had to learn
the relationship between each alien and the accompanying
category of sounds, although this was never made explicit to
participants. Similar to the process of learning to treat acous-
tically distinct speech signals as members of the same phonetic
category (Kuhl, 2004), listeners gradually learn that perceptu-
ally discriminable “alien” sounds are functionally equivalent
in the game (Wade and Holt, 2005).

To investigate whether expertise with these artificial non-
speech sounds leads to a more speech-like neural signature, par-
ticipants were scanned before and after five or more hours of
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video-game-based training with the novel artificial, complex
nonlinguistic sounds. We predicted that categorization exper-
tise with these stimuli would lead to an increase in activation
in left STS regions and that the degree of activation changes in
this region would be modulated by how well participants had
learned the novel auditory categories.

Materials and Methods
Subjects
Eight female and nine male participants (age
range 19 –36 years) took part in the study. Par-
ticipants reported normal hearing and no his-
tory of neurological or psychiatric disease. All
gave written informed consent and were paid
for their participation. The study was approved
by the UCL Research Ethics Committee.

Stimuli
The artificial complex sounds used during both
scanning and training were grouped into four
auditory categories. Each sound category was
comprised of sounds with two spectral peaks
with rapid onset or offset frequency transitions
combined together additively (see Fig. 1).
Across all four categories the acoustic source of
the lower frequency spectral peak was a 143 Hz
square-wave. For two of the categories the
source of the higher spectral peak was a 150 Hz
sawtooth wave whereas for the other two cate-
gories it was derived from uniform random
(white) noise. These source signals were filtered
to create spectral peaks approximately parallel-
ing formant resonances of the human vocal
tract in their change in frequency across time.
Despite this similarity to speech, these sounds
possessed a complex fine temporal structure
completely unlike that of speech and partici-
pants do not report these sounds as being
speech-like (Wade and Holt, 2005). Category
exemplars varied along several spectrotemporal

dimensions with some overlap across categories, as is observed in human
speech categories (Kuhl, 2004). To successfully recognize a sound as an
exemplar of a specific category, participants needed to simultaneously
make use of multiple cues, i.e., to solve a nonlinear mapping involving both
second spectral peak onset frequency and second spectral peak steady-state
frequency (see Wade and Holt, 2005 for full details). Each category con-
tained 11 sounds (see supplemental materials, available at
www.jneurosci.org; http://www.psy.cmu.edu/�lholt/WadeHolt2005/
gallery_irfbats.php). Six of the sounds (those in Fig. 1) were used both in
training and scanning and an additional five novel sounds (spanning ap-
proximately the same spectral range) were heard only in scanning and dur-
ing a behavioral posttest auditory categorization task.

Procedure
Training paradigm. Auditory training consisted of participants playing
five or more hours of a space-invaders-type computer game (Wade and
Holt, 2005) (see Fig. 2). Participants played the game unsupervised at
home with records of both game performance and time playing logged.
(For four participants, this information was lost because of data transfer
errors). In the game there were four different visually presented aliens
that participants had to either capture or shoot. Each alien was associated
with a different auditory category, an exemplar of which was played
repeatedly while the alien was on the screen. As the game progressed, the
aliens moved faster and originated further from the center of the screen.
Each alien consistently came from a particular direction, e.g., blue aliens
always came from the top of the screen, with their exact position jittered
within a quadrant of the screen. As the game became harder, aliens orig-
inated further from the center of the screen such that participants could
hear the alien’s characteristic sounds before seeing the alien. Thus, par-
ticipants could use auditory category information to predict which
screen quadrant the alien would come from, thereby improving overall
game performance. Note that the video game was predominantly visual,
and participants were given no instructions or hints to use or attend to
auditory information (Wade and Holt, 2005). Success in learning the
auditory categories was evaluated using two measures: (1) an indirect
measure, which was the highest game level attained over the course of
training, and (2) a more direct measure, which was a four alternative-

Figure 2. A typical screen shot (rendered in grayscale) of the space-invaders game; for a
detailed description, see the study by Wade and Holt (2005). Subjects had to move their view-
finder toward the looming alien (here in white) and position it in the center of the screen so as
to kill or capture it.

Figure 1. Schematic representations of the different sounds from the four auditory categories heard during the computer
game training (taken from Wade and Holt, 2005). Each exemplar is comprised of the invariant lower spectral peak (a square wave)
and one of six possible higher spectral peaks (either sawtooth or bandpass noise). Each of the four auditory categories was paired
with a space-invader alien picture.
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forced choice categorization task administered after the second scanning
session, in which participants were continuously shown a “line-up” of
the four alien characters and were played each auditory exemplar four
times over the course of 176 randomly ordered trials. Participants were
asked on each trial to identify which alien character corresponded to the
sound they had just heard (for additional details, see Wade and Holt,
2005).

Imaging procedure. All volunteers participated in two scanning ses-
sions, one before they had any experience with the novel, artificial
sounds, and one after five or more hours of video-game based training. In
both the pretraining and posttraining scanning sessions, participants
underwent two 10 min runs in which they saw pictures of the four aliens
and passively heard sounds from each auditory category. In half of the
presentations, there was a mismatch between the picture of the alien and
category of the accompanying sound. The order of the two runs was fully
counterbalanced over participants. In the scanner, participants per-
formed a visual oddball detection task, pressing a button when they saw
an upside-down alien. This task focused attention on the visual alien
figures to avoid explicit categorization of the sounds while helping to
control and monitor cognitive and attentional state. To reduce auditory
interference from the noise of the scanner, we used a semisparse sam-
pling design in which stimuli were presented in silent periods between
volume acquisitions. The visual and auditory stimuli were presented for
1.2 s, flanked by 100 ms of silence before and after the stimulus. Then, a
functional volume was acquired for 2 s, for a total interstimulus interval
[and repetition time (TR)] of 3.4 s. Each run consisted of 99 audio-visual
trials and 79 silent trials in which subjects viewed a white fixation cross.

Pretraining and posttraining scans were separated in time by one to 4
weeks across participants. After the second posttraining run, an addi-
tional functional localizer scan was run to identify each participant’s
speech-sensitive brain regions. Participants passively listened to 50 trials
of spoken words and 50 trials of environmental sounds that corre-
sponded semantically to the words, while seeing color photographs of the
object that matched the word or sound. As in the alien runs, participants
performed a visual oddball detection task, pressing a button whenever
they saw an upside-down picture. Auditory stimuli were taken from a
previous study comparing speech and environmental sound processing
(Cummings et al., 2006).

Scanning took place at the Birkbeck-UCL Centre for Neuroimaging
(BUCNI) using a 1.5T Siemens Avanto scanner with a 12-element phased
array head coil. Functional imaging consisted of 21 T2*-weighted
prospective-motion-corrected echo-planar image slices [TR � 3400 ms,
echo time (TE) � 41 ms, field of view � 224 � 224 mm], giving a
notional 3.5 � 3.5 � 3.5 mm resolution. Oblique axial slices were auto-
matically positioned using Siemens AutoAlign so as to consistently image
peri-Sylvian cortex. (The AutoAlign protocol acquires several short an-
atomical images at the beginning of each scanning session to align the
participant’s brain to a standard template brain, where the slice planes are
defined). The slice plane was approximately aligned with the Sylvian
fissure, with the inferior-most slice passing through or under the inferior
temporal gyrus, and the superior-most slice passing at least above the
inferior frontal sulcus and the supramarginal gyrus. A total of 180 vol-
umes were collected per run. An automated shimming algorithm was
used to reduce magnetic field inhomogeneities. In addition, for anatom-
ical localization purposes, a T1-weighted scan was acquired during the
pretraining scan (MPRAGE, TR � 2730 ms, TE � 3.57 ms) with 1 mm 2

in-plane resolution and 1 mm slice thickness.

Analyses
Functional imaging data were analyzed using FMRIB Software Library
(www.fmrib.ox.ac.uk/fsl). After removing the first four images of each
session to allow for T1 equilibrium, functional images were realigned to
correct for small head movements (Jenkinson and Smith, 2001) and then
smoothed with a 6 mm full-width half-maximum Gaussian filter to in-
crease the signal-to-noise ratio. The time series data were prewhitened to
remove temporal auto-correlation (Woolrich et al., 2001). Images were
then entered into a general linear model to compute participant-specific
patterns of activations for both pretraining and posttraining sessions.
The presence of audio-visual alien stimuli was modeled by convolving

trial onsets with a double-gamma “canonical” hemodynamic response
function (Glover, 1999). Oddball trials were also entered in the model
but were not included in the subsequent analyses. Silent trials formed the
implicit baseline condition. In addition, temporal derivatives and esti-
mated motion parameters were included as covariates of no interest to
increase statistical sensitivity.

First level results were transformed into standard space using a 12
degree-of-freedom affine registration, first registering each functional
run to each subject’s high-resolution anatomical scan (acquired during
the pretraining scanning session) before registering this to the MNI152
template. At the second level, a paired t test was used to compare activa-
tion in the pretraining and posttraining session using a mixed-effect
model (Beckmann et al., 2003; Woolrich et al., 2004). In addition, the
posttest behavioral auditory categorization score was included as a co-
variate to assess the relation between the participant’s skill at learning to
categorize the auditory stimuli and her/his brain activation. Activations
were thresholded at Z �2.3, and were considered significant at p � 0.05
using a cluster-wise significance test. Analyses were conducted on the
whole brain and also within a speech-sensitive mask to increase signal
detection (Friston et al., 1994). This mask was created at the group level
using the speech-localizer task and included only voxels for which speech
showed significantly greater activation than semantically matched envi-
ronmental sounds (at p � 0.05, whole brain, cluster-corrected). The
resulting mask spanned much of the left superior temporal gyrus and
sulcus (cluster size � 13,066 mm 3, z � 5.13, center of gravity � [�57,
�31, �2]) (see Fig. 4a).

In addition to the voxelwise analyses of the group activation data, we
also performed a region of interest (ROI)-based correlation analysis be-
tween participants’ change in activation from pretraining to posttraining
and their accuracy in explicitly categorizing the alien sounds. Here, we
first created a speech-selective ROI for each individual participant using
their own speech � environmental sounds contrast. These individually
defined ROIs included only voxels that fell within the group-defined
mask, and that were active at a significance level of p � 0.01, corrected for
multiple comparisons within the volume of the group mask (Worsley et
al., 1992). Four participants had no suprathreshold voxels and therefore
were not included in the analyses. Within each participant’s ROI, we then
extracted the average parameter estimates (i.e., betas) for the posttrain-
ing minus pretraining contrast. Participants’ average change in activa-
tion within their individually defined speech-selective ROI was then cor-
related with their scores on the postscan test of auditory categorization.

Results
Participants varied considerably in how well they mastered the
computer game. After training, game performance was measured
by the highest game level achieved and varied from 13 to 32
(mean � 20). This indirect measure of auditory learning corre-
lated strongly with participants’ skill in explicitly categorizing the
novel sounds in the postscan behavioral categorization test, with
accuracy scores ranging from 7% to 89% (mean � 45%, cross-
measure correlation: r(11) � 0.83, p � 0.001, see supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).
Importantly, the variation among participants was sizable, with 5
of 17 participants categorizing sounds at or below chance levels
(25%) while 3 of 17 participants achieved �75% correct.

The aim of the initial imaging analysis was to identify group-
level changes in activation between the posttraining and pretrain-
ing scans in an undirected, whole brain analysis. This analysis
revealed two clusters where there was a decrease in deactivation
from pretraining to posttraining scans: one was located in the
precuneus bilaterally and spread into cingulate regions (x� �3,
y� �50, z � 31, cluster size � 27,589 mm 3, p � 0.001 cluster-
wise) and the other was found along the left angular gyrus (x�
�46, y� �65, z � 31, cluster size � 6389 mm 3, p � 0.05 cluster-
wise), see Figure 3. Interestingly, there were no changes found in
canonical speech-sensitive regions, even when the analyses were
constrained to speech-sensitive regions of interest. Finally, this
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pattern did not change between trials in which the auditory and
visual categories matched or mismatched. In other words, there
was no evidence at a group level that training alone changed
activation in speech-sensitive areas.

Given the considerable behavioral variability in how well par-
ticipants learned the artificial auditory categories, we regressed
activation induced by the artificial nonspeech sounds with each
participant’s performance on the behavioral categorization task.
At the whole-brain level this regression revealed no regions with
significant differences between pretraining and posttraining ac-
tivation. However, within the left STS speech-sensitive region of
interest (created via a separate scan as described in Materials and
Methods), there was a cluster of voxels with a significant, positive
correlation between participants’ accuracy in categorizing the ar-
tificial sounds and their change in activation from pretraining to
posttraining (x� �54, y� �37, z� �1, cluster size � 878 mm 3,
p � 0.05 cluster-wise) (see Fig. 4a,b). The relationship between
behavioral performance and change in pretraining to posttrain-
ing activation in left STS also held when speech-selective ROIs
were defined on an individual-by-individual basis. As in the
group-based analysis, behavioral categorization performance
was positively correlated with an increase in activation in individ-
ual participant’s speech-sensitive left temporal regions (Spear-
man’s r � 0.60, p � 0.014, one-tailed) (Fig. 4c). In other words,
participants who best learned the artificial auditory categories
showed the greatest increase in activation in speech-sensitive cor-
tex to these nonlinguistic sounds.

Discussion
These findings demonstrate that a region of left posterior STS
(pSTS) commonly considered speech-selective is also recruited
during passive perception of novel nonspeech sounds, but only in

subjects who learned to perceive and use
the category relationships among these
sounds. This result is consistent with the
hypothesis that speech-sensitive activation
in left pSTS is in part driven by expertise in
categorizing sounds.

Converging evidence that a left pSTS
region is involved in categorizing complex
sounds (whether they are speech or not)
comes from reports of activation in similar
regions in studies investigating sine-wave
speech. For instance, Desai et al. (2008)
and Dehaene-Lambertz et al. (2005) re-
port activation of very similar pSTS re-
gions during explicit categorization of
sine-wave stimulus complexes, which un-
der the right circumstances can be heard as
either speech-like or nonspeech-like.
These earlier studies focus on the change
in activation that results from being in-
structed to categorize sine-wave stimuli as
speech, and as such involve rapid (i.e., dur-
ing the course of a single scanning ses-
sion), possibly attentionally modulated
shifts in cortical processing. The sine-wave
speech studies suggest that this cortical re-
gion is not highly selective for full-
spectrum speech acoustics, as sine-wave
speech is an acoustic caricature of speech
acoustics. One possibility is that left pSTS
activation by sine-wave speech reflects a
parasitic use of existing cortical speech

processing regions.
The present stimuli are much different in this respect; they are

not heard as speech-like and listeners cannot assign speech cate-
gories to them (Wade and Holt, 2005). What makes the current
study markedly different from previous studies is the role it places
on auditory category learning in modulating activation in the left
posterior STS to nonspeech stimuli. Our study demonstrates that
learning to categorize nonspeech sounds that have no obvious
inherent category structure can induce a more speech-like neural
profile. In contrast, the pretraining to posttraining analyses that
did not account for individual variation in learning revealed ac-
tivation changes in regions unlikely to be involved specifically
with auditory expertise but rather more general effects, possibly
relating to familiarity with the odd-ball task used during scan-
ning. As noted previously, the activation changes in the precu-
neus, cingulate, and left angular gyrus actually involve a decrease
in deactivation (rather than an increase in activation) from pre-
training to posttraining. These regions are typically considered
part of the default network (Buckner et al., 2008) with the activa-
tion changes in the present study possibly reflecting increasing
familiarity with the task and stimuli used in the scanner. How-
ever, it is worth noting that other auditory and language training
studies (Golestani and Zatorre, 2004) showed that posttraining
activation in part of the left angular gyrus positively correlated
with subjects’ proficiency in learning a non-native speech
contrast.

The current study does not address the issue of the spectro-
temporal acoustic properties of the auditory stimuli and how
they might interact with expertise-related changes in activation.
Left-lateralized superior temporal regions implicated in speech
processing have also been implicated in processing nonspeech

Figure 3. Overall differences in activation between pretraining and posttraining scans, painted in orange onto lateral (top) and
medial (bottom) views of an average inflated cortical surface using FreeSurfer (Dale et al., 1999). Here, sulci are dark gray, and gyri are
light gray. Bar graphs represent � weights at the peak voxel for each activation cluster; error bars represent � 1 SE.
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stimuli with rapid temporal changes (for a review, see Zatorre
and Gandour, 2008). Therefore, there may be an interaction be-
tween training and the specific acoustic characteristics of non-
speech sound stimuli (Mirman et al., 2004). Expertise with com-
plex stimuli involving spectrotemporal changes aligned with the
time course and frequency range of speech may be reflected in
modulation of activation in left pSTS region, but the present
results cannot eliminate the possibility that expertise with acous-
tic signals radically different from speech would produce a differ-
ent pattern of results. Nevertheless, the acoustic distinction be-
tween the alien sounds and speech is sufficiently great to suggest
that any acoustic specialization within pSTS must be rather
broadly tuned. It may be that left pSTS is particularly well suited
for parcellating rapid temporally varying higher-dimensional
acoustical space into sound categories, be they speech or
nonspeech.

Although we find that activation in this left pSTS was modu-
lated by listeners’ expertise with auditory categories, we do not
suggest this region is solely responsible for or dedicated to carry-
ing out auditory categorization. The underlying auditory pro-
cessing might be best understood in terms of more distributed
accounts of neural processing possibly spanning a network of
regions (Haxby et al., 2001). Indeed, consistent with this, a recent
study taking advantage of multivoxel pattern classification tech-
niques demonstrates that the processing underlying speech and

voice categorization may be widely distributed across superior
temporal regional (Formisano et al., 2008).

The results of the current study with expertise for auditory
stimuli can be interpreted in the context of the “Greebles” studies
from the face processing and visual expertise literature (Gauthier
et al., 1999). In these studies, learning categories of complex non-
face visual stimuli recruits activation in face-sensitive cortical
regions, suggesting that seemingly domain-specific patterns of
neural activation in higher cortical regions may be driven, in part,
by experience-based restructuring of high-dimensional percep-
tual space. Similar results have also been observed retrospectively
with experts in different domains, such as in discriminating cars
and birds (Tarr and Gauthier, 2000; Xu, 2005). However, this has
been a highly active research area and there is considerable debate
about the replicability and the magnitude of expertise effects in
face-selective regions of cortex involving nonface stimuli (for a
review, see Kanwisher and Yovel, 2006). A similarly polarized
debate is unlikely to be helpful in the context of speech process-
ing, where there is growing recognition of the need to integrate
evidence for general-purpose with domain-specific neural mech-
anisms (Zatorre and Gandour, 2008).

As with the Greebles studies, the current findings imply that at
least some of what is taken to be part of a speech-specific cortical
processing network is actually part of a more general network for
processing and categorizing sound. The preferential left-
lateralized STS activation typically observed for speech, in fact,
may reflect ontogenetic changes to the neural mechanisms for
processing auditory stimuli that result from expertise with speech
sounds. The implication is that part of what makes the processing
of speech-sounds special is how speech is used and the cortical
fine-tuning this induces with the experience of speech, rather
than a qualitative adaptation to speech sounds involving dedi-
cated processing networks or representations.
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