13,169 research outputs found

    Study of vortex valve for medium temperature solid propellants

    Get PDF
    Fluid state vortex valve secondary injection control system shows considerable promise for future application to solid propellant rocket engine thrust vector control. The single axis injection system tested would be capable of providing secondary injection thrust vector control using 2000 deg F gas

    Research study of the vortex valve for medium-temperature solid propellants

    Get PDF
    Fluid state control system with vortex valves for solid propellant gas generator flow throttlin

    Microscopic Restoration of Proton-Neutron Mixed Symmetry in Weakly Collective Nuclei

    Get PDF
    Starting from the microscopic low-momentum nucleon-nucleon interaction V{low k}, we present the first systematic shell model study of magnetic moments and magnetic dipole transition strengths of the basic low-energy one-quadrupole phonon excitations in nearly-spherical nuclei. Studying in particular the even-even N=52 isotones from 92Zr to 100Cd, we find the predicted evolution of the predominantly proton-neutron non-symmetric state reveals a restoration of collective proton-neutron mixed-symmetry structure near mid-shell. This provides the first explanation for the existence of pronounced collective mixed-symmetry structures in weakly-collective nuclei.Comment: 5 Pages, 3 figure

    Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions

    Full text link
    We present shell model calculations for the beta-decay of the 14C ground state to the 14N ground state, treating the states of the A=14 multiplet as two 0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN) interactions derived from the realistic Bonn-B potential and find that the Gamow-Teller matrix element is too large to describe the known lifetime. By using a modified version of this potential that incorporates the effects of Brown-Rho scaling medium modifications, we find that the GT matrix element vanishes for a nuclear density around 85% that of nuclear matter. We find that the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is improved using the medium-modified Bonn-B potential and that the transition strengths from excited states of 14C to the 14N ground state are compatible with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion

    Microscopic optical potential from chiral nuclear forces

    Full text link
    The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real, energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density. Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential, which is positive (negative) for momenta below (above) the Fermi momentum, arises at second-order and is nearly inversion-symmetric about the Fermi surface when two-nucleon interactions alone are present. The imaginary part is strongly absorptive and requires the inclusion of an effective mass correction as well as self-consistent single-particle energies to attain qualitative agreement with phenomenology.Comment: 12 pages, 7 figures, added references, corrected typo

    Quantum-limited mass flow of liquid 3^{3}He

    Get PDF
    We consider theoretically the possibility of observing unusual quantum fluid behavior in liquid 3^{3}He and solutions of 3^{3}He in 4^{4}He systems confined to nano-channels. In the case of pure ballistic flow at very low temperature conductance will be quantized in units of 2m2/h2m^{2}/h. We show that these steps should be sensitive to increases in temperature. We also use of a random scattering matrix simulation to study flow with diffusive wall scattering. Universal conductance fluctuations analogous to those seen in electron systems should then be observable. Finally we consider the possibility of the cross-over to a one-dimensional system at sufficiently low temperature where the system could form a Luttinger liquid

    Distal occurrence of mid-Holocene Whakatane Tephra on the Chatham Islands, New Zealand, and potential for cryptotephra studies

    Get PDF
    The Whakatane Tephra, a rhyolitic tephra erupted ca. 5500 cal. BP from Okataina Volcanic Centre, central North Island, has been identified on the Chatham Islands which lie ˜900 km east of Christchurch, New Zealand. The visible tephra layer, ˜5 mm in thickness and preserved within peat on Pitt Island, was identified using both radiocarbon dating and analysis of glass shards by electron microprobe. Whakatane Tephra is the first Holocene tephra to be identified on the Chatham Islands, and it is the most distal Holocene tephra yet recorded in the New Zealand region, being ˜850 km from source. The Pitt Island occurrence extends the tephra's dispersal area markedly, by an order of magnitude, possibly to ˜300,000 km2. An estimated dispersal index (D) of approximately 105 km2 indicates that the eruption generated a very high plinian column, possibly exceeding ˜30 km in height, with strong winds blowing the ash plume southeastwards. This new discovery of distal Whakatane Tephra as a thin but visible layer strongly implies that cryptotephras are likely to be preserved on the Chatham Islands and within adjacent ocean floor sediments. Therefore the potential exists to develop enhanced cryptotephrostratigraphic records from these distal areas, which in turn would help facilitate precise correlation via tephrochronology of palaeoenvironmental records (such as NZ-INTIMATE) from mainland New Zealand, the southwest Pacific Ocean, and the Chatham Islands
    corecore