2,419 research outputs found

    Multisite phosphorylation in (bio-)chemical reaction networks : multistationarity and robustness

    Get PDF

    Two-mode entanglement in two-component Bose-Einstein condensates

    Full text link
    We study the generation of two-mode entanglement in a two-component Bose-Einstein condensate trapped in a double-well potential. By applying the Holstein-Primakoff transformation, we show that the problem is exactly solvable as long as the number of excitations due to atom-atom interactions remains low. In particular, the condensate constitutes a symmetric Gaussian system, thereby enabling its entanglement of formation to be measured directly by the fluctuations in the quadratures of the two constituent components [Giedke {\it et al.}, Phys. Rev. Lett. {\bf 91}, 107901 (2003)]. We discover that significant two-mode squeezing occurs in the condensate if the interspecies interaction is sufficiently strong, which leads to strong entanglement between the two components.Comment: 22 pages, 4 figure

    Entanglement between atomic condensates in an optical lattice: effects of interaction range

    Full text link
    We study the area-dependent entropy and two-site entanglement for two state Bose-Einstein condensates in a 2D optical lattice. We consider the case where the array of two component condensates behave like an ensemble of spin-half particles with the interaction to its nearest neighbors and next nearest neighbors. We show how the Hamiltonian of their Bose-Einstein condensate lattice with nearest-neighbor and next-nearest-neighbor interactions can be mapped into a harmonic lattice. We use this to determine the entropy and entanglement content of the lattice.Comment: 5 pages, 3 figures, title change

    Analysis of measurement errors for a superconducting phase qubit

    Full text link
    We analyze several mechanisms leading to errors in a course of measurement of a superconducting flux-biased phase qubit. Insufficiently long measurement pulse may lead to nonadiabatic transitions between qubit states 1>|1> and 0>|0>, before tunneling through a reduced barrier is supposed to distinguish the qubit states. Finite (though large) ratio of tunneling rates for these states leads to incomplete discrimination between 1>|1> and 0>|0>. Insufficiently fast energy relaxation after the tunneling of state 1>|1> may cause the repopulation of the quantum well in which only the state 0>|0> is supposed to remain. We analyze these types of measurement errors using analytical approaches as well as numerical solution of the time-dependent Schr\"{o}dinger equation.Comment: 14 pages, 14 figure

    Another proof of Gell-Mann and Low's theorem

    Full text link
    The theorem by Gell-Mann and Low is a cornerstone in QFT and zero-temperature many-body theory. The standard proof is based on Dyson's time-ordered expansion of the propagator; a proof based on exact identities for the time-propagator is here given.Comment: 5 page

    Neutron beta decay in effective field theory

    Get PDF
    Radiative corrections to the lifetime and angular correlation coefficients of neutron beta-decay are evaluated in effecitive field theory. We also evaluate the lowest order nucleon recoil corrections, including weak-magnetism. Our results agree with those of the long-range and model-independent part of previous calculations. In an effective theory the model-dependent radiative corrections are replaced by well-defined low-energy constants. The effective field theory allows a systematic evaluation of higher order corrections to our results to the extent that the relevant low-energy constants are known.Comment: 13 pages, 1 figure; two references added, minor correctio

    A Review of Rare Pion and Muon Decays

    Full text link
    After a decade of no measurements of pion and muon rare decays, PIBETA, a new experimental program is producing its first results. We report on a new experimental study of the pion beta decay, Pi(+) -> Pi(0) e(+) Nu, the Pi(e2 gamma) radiative decay, Pi(+) -> e(+) Nu Gamma, and muon radiative decay, Mu -> e Nu Gamma. The new results represent four- to six-fold improvements in precision over the previous measurements. Excellent agreement with Standard Model predictions is observed in all channels except for one kinematic region of the Pi(e2 gamma) radiative decay involving energetic photons and lower-energy positrons.Comment: 10 pages, 6 figures, 2 tables, invited talk presented at MESON 2004, 8th Int'l. Workshop on Meson Production, Properties and Interaction, Krakow, Poland 4-8 June 200
    corecore