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The paper presents a study of synchronization phenomena in a system of 22 nephrons supplied with
blood from a common cortical radial artery. The nephrons are assumed to interact via hemodynamic
and vascularly propagated coupling, both mediated by vascular connections. Using anatomic and
physiological criteria, the nephrons are divided into groups: cortical nephrons and medullary neph-
rons with short, intermediate and long Henle loops. Within each of these groups the delay param-
eters of the internal feedback regulation are given a random component to represent the interneph-
ron variability. For parameters that generate simple limit cycle dynamics in the pressure and flow
regulation of single nephrons, the ensemble of coupled nephrons showed steady state, quasiperiodic
or chaotic dynamics, depending on the interaction strengths and the arterial blood pressure. When
the solutions were either quasiperiodic or chaotic, cortical nephrons synchronized to a single fre-
quency, but the longer medullary nephrons formed two clusters with different frequencies. Under no
physiologically realistic combination of parameters did all nephrons assume a common frequency.
Our results suggest a greater variability in the nephron dynamics than is apparent from measure-
ments performed on cortical nephrons only. This variability may explain the development of chaotic
dynamics in tubular pressure records from hypertensive rats. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2404774�

The kidneys provide important long-term regulation of
the cardiovascular system by maintaining the volume and
composition of the body fluids within narrow bounds.
Maintenance of the blood volume, for example, ensures
that the heart can provide cardiac output appropriate to
the functional needs of the organism and can maintain
the arterial blood pressure at levels that permit adequate
perfusion of all organs. At the same time, the kidneys
protect their own function against short-term variations
in the blood pressure. This regulation takes place mainly
through tubuloglomerular feedback, a mechanism in
which the individual nephrons of the kidney can regulate
their incoming blood flow in response to variations in the
composition of tubular fluid after flow dependent epithe-
lial transport mechanisms have altered concentrations of
various solutes. Because of a delay associated with the
flow of fluid, this regulation tends to become unstable and
to produce self-sustained oscillations in nephron pres-
sures and flows. The nephrons interact with one another
via two different mechanisms, both mediated by phenom-
ena in the connecting vascular network. Experiments on
rats show that neighboring nephrons in the surface of the
kidney can synchronize their pressure and flow oscilla-

tions. It has not yet been possible to perform similar mea-
surements for nephrons deeper in the kidney. Using avail-
able anatomical and physiological information we have
constructed a model of 22 interacting nephrons, including
surface as well as deep nephrons. The model shows that,
for physiologically reasonable parameter values, the deep
nephrons do not synchronize with the superficial neph-
rons even though they are coupled via the same blood
supply. This lack of synchronization introduces an asym-
metry into the system that may be responsible for the
development of chaotic dynamics in the tubules of rats
with experimental hypertension.

I. INTRODUCTION

The interaction between the kidneys and the cardiovas-
cular system is complex. As a part of its role in maintaining
body fluid volumes, the kidneys, for instance, produce a set
of hormones that affect blood vessels within the kidneys and
elsewhere in the body. These hormones may influence the
long term structure of the cardiovascular system. Distur-
bances of kidney function can cause hypertension, a preva-
lent disease in industrialized societies. There is now a de-
tailed understanding of how the hormones produced in the
kidney affect the blood pressure.
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The kidneys are also perfused with blood and are thus
exposed to all of the fluctuations present in the cardiovascu-
lar system. There are two major periodicites in the blood
pressure: one at the frequency of the heart rate �1 Hz in
humans, 4−6 Hz in the rodents that are often used for ex-
perimental work�, and the other with the period of 24 h.
Over the intermediate bandwidth between these periodicites
the blood pressure displays a 1/ f pattern.1,2 The 1/ f fluctua-
tions are caused by the independent actions of arterioles in
all organs of the body, with contractions of large muscles
making particularly strong contributions, and they present a
specific challenge to the kidneys as they serve to regulate the
body fluids.

The process of urine formation begins with the filtration
of fluid at the glomerulus, a collection of capillaries that
operates at higher vascular pressures than capillaries else-
where in the body. The formation of glomerular filtrate re-
quires this higher pressure. A small gradient of hydrostatic
pressure drives the filtrate along the kidney tubule, also
known as the nephron. During this transit, cells of the tubule
selectively reabsorb solutes and water. After passage through
several successive tubule segments about 80% of the glom-
erular filtrate and about 90% of the filtered NaCl will have
been returned to the blood. At this point the tubule makes
contact with the same glomerulus from which it began. The
contact point is a structure, the macula densa, specialized for
information transfer between the tubule and the arterioles
whose vascular resistance determines the blood flow to the
nephron.

Epithelial transport processes responsible for body fluid
regulation work on the remaining solutes and water, under
hormonal control from other organs, including the brain, the
adrenal gland, and the kidney itself. The hormonally sensi-
tive sites have limited dynamic range and to be effective in
regulating body fluids, the solute load delivered to them in
the tubular fluid must remain within relatively narrow
bounds. The 1/ f fluctuations are large enough that, if unop-
posed, they could impose large fluctuations on glomerular
filtration rate and therefore on the solute load delivered to the
hormonally sensitive sites. Such fluctuations could easily be-
come too large to permit the hormones to exert their needed
effects.

Kidneys autoregulate their blood flow in response to
these fluctuations. The process of autoregulation makes use
of the tubular contact with the glomerulus, so that the con-
centration of electrolytes becomes a controlled variable. In-
dividual nephrons in mammalian kidneys regulate their own
blood flow with two mechanisms: tubuloglomerular feed-
back �TGF�, which senses flow rate dependent changes in
concentrations of certain electrolytes in the tubular fluid; and
myogenic mechanism, which senses vascular hydrostatic
pressure in the afferent arterioles. Both adjust the contractile
state of vascular smooth muscle in the arteriolar wall to vary
vascular resistance to blood flow. Nephrons also communi-
cate with each other by means of vascular signaling initiated
by the TGF mechanism and propagated electrotonically and
decrementally over the vascular wall.3–6 Both TGF regula-
tion and the myogenic mechanism are oscillating nonlinear
systems that interact with each other within single

nephrons3,7–13 and, by virtue of the vascularly propagated
signals, between neighboring nephrons.14,15 These interac-
tions produce modulation of the myogenic mechanism by
TGF as well as different forms of synchronization.11,12,14 So
far, these phenomena have been studied experimentally only
in cortical nephrons with tubular and vascular components
on the surface of the kidney, but because the deeper nephrons
have similar structures and regulatory mechanisms, we as-
sume that they, too, generate oscillations and are capable of
interactions. If all or most nephrons oscillate, and if they
interact, synchronization and other forms of nonlinear inter-
actions are to be expected among nephrons along the same
cortical radial artery.

Nephrons that lie deep within the kidney are longer than
those on the surface, and because the TGF signal depends on
flow rate dependent concentration changes reaching a tubular
sensing site, one expects that the longer nephrons will oscil-
late more slowly than the shorter superficial ones. While in-
teractions among nephrons of different lengths are to be an-
ticipated, the resulting coupling phenomena cannot be
predicted in advance.

Using available anatomical and physiological informa-
tion, we have simulated an ensemble of nephrons of different
lengths, supplied from a single artery, and allowed to interact
with each other. The questions at issue are whether synchro-
nization occurs, and if it does, whether all nephrons synchro-
nize to a single common frequency. Tubular pressure fluctua-
tions from animals with chronic hypertension are not
periodic, and the time series display characteristics of deter-
ministic chaos.16–18 In particular, the data sets have positive
first Lyapunov exponents and the correlation dimensions in-
crease several fold when the phase values of Fourier trans-
forms of the time series are randomized. Efforts have been
made with various models of the system to simulate this
transition. However, the values of the TGF feedback gain
required to produce chaotic phenomena in existing single-
nephron models exceed realistic physiological values by
nearly 30%. We wish to use the simulation to test whether
the interactions with other nephrons in a vascularly coupled
ensemble could promote the transition.

II. NEPHRON TREE MODEL

Our model includes both vascular and nephron compo-
nents. The interactions among the nephrons occur via vascu-
lar signal propagation and due to oscillations in vascular
pressure within the cortical radial artery. We make use of a
relatively simple model of nephron dynamics19,20 and con-
sider a tapering cortical radial artery whose dimensions are
based on recent measurements made in rat kidneys.24

A. Vascular model

From measurements of signal strength in nephron-
nephron communication we estimate that the distance over
which such signals can be effective is about 1.5 mm.21,22 The
renal cortex is about 2 mm deep in rats, and the cortical
radial artery branches from the arcuate artery and penetrates
toward the renal surface within the cortex. We assume, there-
fore, that the field of interacting nephrons consists of all
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those with afferent arterioles originating from a single corti-
cal radial artery, which includes superficial �cortical� as well
as deep �juxtamedullary� nephrons. The number of nephrons
originating from a single cortical radial artery varies some-
what; estimates are in the range of 20–40;23,24 we used 22, of
which 14 were defined as cortical and 8 as medullary.

Figure 1 shows the anatomic basis for the vascular
model. A tapered cortical radial artery branches from an ar-
cuate artery. One pair of afferent arterioles branches from the
arcuate artery and ten pairs from the cortical radial artery.
The level of origin of each pair is designated a node. At the
ninth node, for example, conservation of blood flow yields

P8
b − P9

b

R8
b −

P9
b − P10

b

R9
b −

P9
b − P5

g

R5
g −

P9
b − P6

g

R6
g = 0, �1�

where the superscript b refers to the branching arteriole, and
the superscript g to the glomerulus. The values of Rk

b are
calculated as 8�lk /�rk

4, using a blood viscosity � of
4.6 cPoise �1 cPoise=10−3 kg/m s�, a segment length of
0.02 cm, and radius values rk taken from the literature.24 Val-
ues of Pg and Rg are calculated in the nephron model. This
formulation �1� is based on the assumption that the vascular
tree can be described as purely resistive and that short term,
local accumulation of blood can be neglected.

The contribution to the activation of the smooth muscle
cells in the arterial wall of the jth nephron produced from
vascularly propagated signals from the neighboring neph-
rons, �� j, is modeled by

�� j = �
i=1,i�j

N

��i exp�− ��Lji + 2Lg�� , �2�

where �i is the TGF activation potential of TGF for the ith
nephron as calculated from the nephron model. Lji is the
distance from the origin of the jth to the origin of the ith

afferent arteriole along the cortical radial artery; Lg is the
length of the afferent arteriole, assumed identical for all
nephrons; and � is a length constant characterizing the expo-
nential decrease of the vascular propagated signal along the
blood vessels. � is a control parameter that we use to exam-
ine the effects of different coupling strengths. �=0.25–0.50
is considered the range of physiologically realistic values for
animals with normal blood pressure. Twice the value of Lg is
used because the TGF signal must be propagated down the
afferent arteriole of the TGF mechanism that initiates the
signal, and up the afferent arteriole of the TGF mechanism
receiving it. Equation �2� expresses the current state of
knowledge of the interaction; a change in the TGF signal in
one nephron can be detected in the TGF mechanism of a
neighboring nephron, and the effect of the interaction de-
creases exponentially with the vascular distance the signal
must traverse.6,21,22 The mechanisms underlying these inter-
actions are presently not known in detail and we offer no
hypothesis regarding them.

B. Nephron model

We used a model developed by the Copenhagen
groups19,20 to represent each of the 22 nephrons. The model
has been described and evaluated in detail in other
studies,5,14,19,20,25 and is presented unmodified in the Appen-
dix. The model consists of a set of five coupled ordinary
differential equations. One equation expresses the rate of
change of the proximal tubule pressure as a function of
glomerular filtration rate, rate of proximal tubule reabsorp-
tion, and outflow from the proximal tubule into the loop of
Henle; another is a second order equation expressing the rate
of change of the afferent arteriolar radius as a function of
vascular pressure and TGF input; and the remaining three
equations constitute a third order delay designed to simulate
the transit of tubular fluid through the tubule to the macula
densa; epithelial transport of NaCl in a tubular segment, the
thick ascending limb of Henle’s loop, that is responsible for
the flow dependent variation of NaCl concentration at the
tubular sensing site; and the time for signal propagation from
the macula densa to the afferent arteriole.

A number of studies report measurements of oscillations
of tubular pressure from cortical nephrons on the surface of
the rat kidney. The period length of the TGF oscillation is
30–50 s. The nephron model used in this study requires a
value for the time delay of 12 s to reproduce a 30 s period,
and we have used this value as the starting point for all
calculations with cortical nephrons. There are no measure-
ments of proximal tubule pressure in juxtamedullary neph-
rons. We have used a more detailed model11 to estimate the
effect of increasing tubular length on the oscillation period.
The inner medulla in the rat is 0.5 cm long. Adding descend-
ing and thin ascending limbs to this length increases the
period about 50%. Different nephrons penetrate to interme-
diate depths of the inner medulla. The increase in period is
likely to vary in proportion to the length of the segment. The
inner medulla is conical in the rat, and the density of med-
ullary nephrons is approximately constant over the volume
of the inner medulla. This suggests that the number of neph-
rons decrease with increasing depth. In addition to the 14

FIG. 1. �Color� Structure of the vascular tree that was modeled; nephrons
are depicted by showing their glomeruli. Blood flows from the arcuate artery
into the cortical radial artery. Twenty two nephrons receive blood through
afferent arterioles from the cortical radial artery. Nephrons are numbered
laterally, and the vascular nodes of origin of the afferent arterioles are num-
bered within the cortical radial artery.
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cortical nephrons, we have therefore used four medullary
nephrons that turn at a depth of 0.1 cm in the inner medulla,
three nephrons that reach 0.3 cm, and one nephron that
reaches a depth of 0.5 cm. The assumed time delays were
14.0 s, 16.3 s, and 17.6 s, respectively, and 12.0 s for the cor-
tical nephrons.

An important issue we wish to address in this paper is to
what extent synchronization occurs among nephrons in the
ensemble. If all the cortical nephrons have a single value of
the time delay, and all the short medullary nephrons another
single value, and so on, the question may be relatively
simple. We have therefore introduced variation in the time
delays by adding random numbers to the time delay in each
of the 22 nephrons. The distribution of random numbers was
Gaussian with a zero mean and a standard deviation of 0.4 s.
A fixed value of the delay was used in each nephron for each
run.

The nephron models were solved with a fourth order
Adams Moulton predictor-corrector method using a fixed
time step of 1�10−4 s. All nephron models were solved at
each time step, and the pressure at each of the nodes in the
cortical radial artery was calculated. The set of calculations
was then iterated until the Euclidian norm of the vector of
vascular pressures varied less than 1.0�10−6 on successive
iterations. Two or three iterations were sufficient to achieve
this level of convergence.

III. SIMULATION RESULTS

The model produced a mixture of steady state, quasip-
eriodic, and chaotic solutions for nephrons in the ensemble.
The value of the tubule pressure in the steady state solutions
varied with arterial pressure and the strength of nephron-
nephron coupling. Figure 2 shows examples of phase plane
projections of the quasiperiodic and chaotic solutions, to-
gether with the results of a simulation of a single nephron not
a part of an ensemble. The results are shown as trajectories
on the plane defined by the tubular hydrostatic pressure and
the afferent arteriolar radius.

Our results for a single nephron, shown in Fig. 2�a�, are
the same as have been reported previously.5,14,19,25 The tu-
bule pressure and the arteriolar diameter oscillate, and the
motion on the phase plane is that of a limit cycle oscillator.
Parameters have been chosen that are typical of measure-
ments made in normal animals. With these values, �=12 and
arterial pressure 100 mm Hg, the myogenic oscillations re-
main inactive in the dynamics of the uncoupled nephron. The
value of �=12 was used for all simulations reported in this
study. For higher values of the gain parameter � of the TGF
mechanism, the individual nephron displays a combination
of fast myogenic and slower tubuloglomerular oscillations
and, as previously reported, one can observe the phenomena
of intranephron synchronization, period-doubling and transi-
tions to chaos.14,19

The simulation of the nephrons that form the ensemble
behaved differently in several respects. First, the amplitude
of the tubular pressure fluctuation was greater in nephrons
acting as part of the ensemble than in the single nephron,
even though the parameter values were the same in the re-
spective simulations. This result is analogous to the report by

Pitman et al.26 that the value of the bifurcation parameter
needed to achieve the Hopf bifurcation in a single nephron
model was reduced when two nephron models were coupled.
Second, the simulations produced almost periodic behavior
in many nephrons, but in no case was the motion strictly that
of a limit cycle oscillator. As shown in Fig. 2�b�, one form of

FIG. 2. Phase plane plots of nephron model results. Panel A: a single neph-
ron model, showing a limit cycle oscillation. Panel B: nephron 1 of the
ensemble of 22, with arterial pressure at 100 mm Hg and �, the strength
parameter of nephron-nephron coupling, at 0.5, showing quasiperiodic mo-
tion. Panel C: nephron 1, with arterial pressure at 125 mm Hg and � at 1.0,
showing a chaotic attractor. Each figure was obtained by simulating 5000 s.

015114-4 Marsh et al. Chaos 17, 015114 �2007�

Downloaded 11 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



behavior showed quasiperiodicity, with two or more incom-
mensurate frequencies.

A typical power spectrum from a nephron with quasip-
eriodic oscillations shows several peaks: three strong peaks
associated with the TGF signal and its harmonics, peaks at
higher frequencies arising from the myogenic oscillations
and their harmonics, and a broader less pronounced peak at
very low frequencies arising from the interactions in the
nephron tree. Similar low frequency components have been
observed in experimental spectra and ascribed to interneph-
ron coupling phenomena, presumably in the form of beating
between the TGF oscillations in different nephrons or be-
cause of a new type of collective modes in the tree
structure.27

For purposes of assessing synchronization we have com-
pared only the frequencies of the TGF oscillation; we con-
sidered neither the fast myogenic oscillations nor the slower
frequencies imposed by the ensemble. We implemented the
model under two sets of conditions designed to permit study
of different aspects of synchronization. To test the interaction
among nephrons of different lengths we applied identical
time delays to all cortical nephrons, and longer delays to the
three groups of medullary nephrons, as described above. In
the other set we added small random contributions to the
time delay of each of the nephrons.

We first examined nephrons operating only in a quasip-
eriodic mode, which occurs at an arterial pressure of
100 mm Hg and a coupling parameter of �=0.5. These val-
ues are the normal arterial pressure and the value of � mea-
sured experimentally in normotensive rats. Figure 3 shows
the dominant period lengths for various values of the cou-
pling strength. In the data set with no nephron-to-nephron
coupling, the period lengths for cortical nephrons did not
vary from nephron to nephron because the time delays were
identical.

Increasing nephron-to-nephron coupling to encompass
the range of physiologically measured values had several ef-
fects. Period lengths for all nephrons increased with coupling
strength, and, as will be seen below, the amplitude of tubular
pressure oscillations increased. Increased coupling also per-

mitted synchronization among juxtamedullary nephrons with
different time delays. Nephron 22 has a longer delay than
any of the others, and has the longest period length when
internephron coupling is set to 0. At higher values of the
coupling strength, nephron 22 becomes entrained with neph-
rons 19–21 to form a cluster with a single frequency. The
shorter juxtamedullary nephrons, numbers 15–18, all oscil-
late at a single frequency, which did not become entrained
with either the cortical nephrons or the longer juxtamedul-
lary ones. The model therefore predicts at least three distinct
frequencies operating along a cortical radial artery.

Next we altered the time delay in each of the 22 neph-
rons by adding a random number as described above. As
shown in Fig. 4�a�, randomization of the time delays pro-
duces a set of time series without synchronization, so long as
the coupling strength � was 0. The juxtamedullary nephrons,
numbers 15–22, had longer periods and larger oscillations
than the cortical nephrons.

Figure 4�b� shows the same array of nephrons as in Fig.
4, upper panel, but with the value of � set to 0.5, which falls
within the range of experimentally measured values, and that
permits synchronization. The magnitude of the oscillations
was greater with synchronization than without. There were
phase differences among the shorter cortical nephrons, but
all oscillated at the same frequency. The juxtamedullary
nephrons did not synchronize with cortical nephrons. The
introduction of variation in the time delays produced a more
complex pattern of synchronization among the juxtamedul-
lary nephrons than is shown in Fig. 2, and this pattern dif-
fered among the sets produced by different random number
series. In all cases the cortical nephrons synchronized among
themselves at a single frequency, but in no case did the jux-
tamedullary nephrons synchronize with the cortical neph-
rons.

Results with a parameter set selected to generate a cha-
otic time series in all nephrons, arterial pressure at
125 mm Hg and �=1.0, are shown in Fig. 4�c�. Although all
22 time series in this simulation showed attractors similar to
those of Fig. 1�c�, the dominant frequency was that of the
TGF oscillation, and each of the oscillations had the same
frequency, demonstrating strong synchronization.

Figure 5, first panel, shows the pressures in the cortical
radial artery from the same simulation shown in Fig. 4, first
panel, with no nephron-nephron coupling. The pressure drop
was calculated using vessel length and radius data from Ref.
24. There is a pressure drop of a few percent along the cor-
tical radial artery as it distributes blood to the afferent arte-
rioles, and there are minor oscillations in pressure. Figure 4,
first panel shows the tubular pressure oscillations present in
the nephrons associated with the vascular pressures in Fig. 5,
first panel. The tubular pressures remain unsynchronized.
This result suggests that hemodynamic coupling is not func-
tionally important under the present conditions.

Figure 5, second panel, shows vascular pressure results
from the same simulation shown in Fig. 4, second panel,
with nephron-nephron coupling active. When there is syn-
chronization of nephron oscillations an oscillation in vascu-
lar pressure emerges at the same frequency as the synchro-
nized oscillation of the cortical nephrons. There is an

FIG. 3. Period length vs nephron number, for three values of �, the strength
of coupling between nephrons. Arterial pressure: 100 mm Hg.
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imperceptible oscillation of the vascular pressure supplying
the longer juxtamedullary nephrons. These longer nephrons
are supplied from the arcuate artery and the beginning of the
cortical radial artery where the blood flow is higher than at
the end of the cortical radial artery. Because the blood flow
in the cortical radial artery near its beginning is large com-
pared to the blood flow to the medullary nephrons, the oscil-
lations in blood flow to these nephrons have only minor ef-
fects on vascular pressure. As blood flows toward the end of
the cortical radial artery the blood flow rate drops and the
effect of oscillations in afferent arteriolar resistance increase,
leading to larger oscillations in vascular pressure.

Figure 5, third panel, contains the results of vascular
pressure calculations in the data set of Fig. 4, third panel,
that predicts chaotic tubular pressure trajectories. An oscilla-
tion in vascular pressure accompanies the oscillation in tu-
bular pressures and flows, and in addition, the irregular fluc-
tuations that give the tubular pressure time series their
chaotic property produce similar irregularities in the vascular
pressure record. The oscillation in vascular pressure shown
in Figs. 5�b� and 5�c� arise because of resource distribution
by the network.

To judge the effectiveness of the internephron signaling
on synchronization, we ran 12 simulations using unique seed
values for the random number generator, once with coupling

FIG. 4. �Color� Tubular hydrostatic pressure in all nephrons of the en-
semble. First panel: �=0; arterial pressure: 100 mm Hg. Second panel: �
=0.5; arterial pressure: 100 mm Hg. Third panel: �=1.0; arterial pressure:
125 mm Hg. The bars show the color scales used to present the tubular
pressures in the three panels.

FIG. 5. �Color� Vascular hydrostatic pressure in the model. Top panel: �
=0, arterial pressure: 100 mm Hg. Middle panel: �=0.5, arterial pressure:
100 mm Hg. Lower panel: �=1.0, arterial pressure: 100 mm Hg.
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set to zero, once with coupling at �=0.5, and once with
coupling at 1.0 and blood pressure elevated. Figure 6 shows
the results. In each of the 12 simulations, the period length in
each nephron was normalized by the modal period length of
cortical nephrons in that simulation. Without coupling there
is variation in the frequencies of the nephrons at each posi-

tion. Activation of coupling eliminates the variation at 11 of
the 14 cortical nephrons, as shown in Fig. 6�b�. The reduc-
tion in the variance with coupling is evidence of strong syn-
chronization, because the interaction leads to changes in fre-
quency, and convergence on a common frequency. When the
parameter set forces the system to adopt a set of chaotic
trajectories, there is also a reduction in the variance of the
cortical nephrons, as shown in Fig. 6�c�. In 11 of the 12
simulations there was complete synchrony at a single fre-
quency among all the cortical nephrons. That one exception
is responsible for all of the variance in cortical nephrons in
Fig. 6�c�.

The juxtamedullary nephrons showed comparable varia-
tion in all three sets of simulations. The formation of syn-
chronized clusters among juxtamedullary nephrons is sensi-
tive to their time delays, and varied from one simulation to
the next. This variation is reflected in persistence of high
values of the standard deviation despite the use of a normal
value for the coupling strength. Nevertheless, the results
shown in Fig. 6 are similar to those shown in Fig. 3, which
leads us to conclude that randomization of nephron lengths
does not destroy the clustering properties of the network.

TGF and the myogenic mechanism work in the kidney to
regulate blood flow to individual nephrons; the main pertur-
bations come from the arterial pressure, which fluctuates
with a 1/ f pattern.1,2 We therefore exercised the model vary-
ing blood pressure over the range 90 to 130 mm Hg, and the
coupling parameter � from 0.0 to 1.5. We sought only to
determine the main classification of dynamical activity over
these ranges. Figures 7�a�–7�c� present the results for neph-
rons 1, 15, and 22, respectively. Nephron 1 is the most su-
perficial of the cortical nephrons and represents those on the
surface of the kidney that have been submitted to experimen-
tal investigation. Nephron 15 is the shortest of the juxtamed-
ullary nephrons; its dynamics have not been studied experi-
mentally. Nephron 22 is the longest juxtamedullary nephron,
and its dynamics have also not been studied experimentally.
A single value of the seed for the random generator was used
for all of the 110 simulations represented in Fig. 7.

In all cases these nephron simulations retain a strong
component at the TGF frequency. As can be seen in all pan-
els the complete absence of nephron-nephron communica-
tion generates oscillations over a range of arterial pressures
from 93 to 103 mm Hg. On both sides of this interval the
model generates steady state behavior for all nephrons. The
arterial pressure here is either too low or too high for the
TGF regulation to be active, and the nephrons operate in one
of the saturation regimes for the S-shaped curve �A2� deter-
mining the activation of the arteriole smooth muscles. Qua-
siperiodicity appears over intermediate ranges of � and arte-
rial pressure for all nephrons. The fraction of the plane
covered by quasiperiodic behavior is maximal in nephron 1
and diminishes in deeper and longer nephrons. For the rest
there are trajectories that form strange attractors on the phase
plane.

The simulations in Fig. 7�a� represent the behavior of the
most superficial cortical nephrons from which the available
experimental results have been collected. In animal experi-
ments the arterial pressure is easily changed, but the value of

FIG. 6. Period length in the 22 nephrons with varying time delays and
arterial pressures. Panel A: �=0.0. Panel B: �=0.5, both at arterial pressure
100 mm Hg. Panel C: �=1.0 and arterial pressure 125 mm Hg. Data pre-
sented as the mean of 12 simulations 	SD. In panel B, the standard devia-
tion values were 0 at positions 4–12, 14, 19, and 21. In panel C, standard
deviation values were 0 at positions 1–3, 6–8, 11, and 13.
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� is not. The value of this parameter is in the range 0.25–0.5
in normal animals.21,22 As mentioned above, oscillations in
tubular pressure are typically measured in normal rats over
the arterial pressure range 95–130 mm Hg. Figure 7�a�
shows a region of chaotic behavior in the arterial pressure
range 100–115 mm Hg when � lies between 0.25 and 0.5.
Results such as these have not been reported in animal ex-
periments that have concentrated precisely in this area of the
parameter plane. We address possible sources of this discrep-
ancy in the Discussion.

IV. DISCUSSION

We simulated the dynamical behavior of a group of
nephrons that derive their blood supply from a single cortical
radial artery in a rat kidney. The simulations include simpli-
fied representations of the adaptive mechanisms present in
every nephron that regulate blood flow. The cortical radial
artery is an example of a resource distribution network.25 All
the blood flowing into it is distributed to the nephrons whose
arterioles branch from it, with none remaining at the end.
The cortical radial artery is relatively large compared to the
arterioles, and we assumed that active control of blood flow
is exercised by the nephrons, and none by the artery. In ad-
dition to local regulation of blood flow, nephrons communi-
cate with each other by sending electrical signals over the
vascular wall. The signals are initiated by TGF, the mecha-
nism that provides local regulation of blood flow, and influ-
ences the vascular response of adjacent nephrons.4,6,21,22

We used the simulation to address several questions.
First, is nephron-to-nephron communication sufficient to ex-
plain the strong synchronization of tubular pressure oscilla-
tions found in normal rats and those with hypertension.4,17,18

Tubular pressure in normal rats oscillates; in hypertensive
rats the fluctuations are irregular and have characteristics
consistent with deterministic chaos.16–18 In the simulation all
of the short cortical nephrons synchronize at a single fre-
quency, even when the time delays in the TGF loop are made
to vary randomly, and also when the cortical nephrons oper-
ate in a chaotic domain. The longer medullary nephrons con-
sistently form two different clusters each operating at a
unique frequency, and neither synchronizing with the cortical
nephrons.

Next, what is the relative significance of different cou-
pling mechanisms? Two types of nephron-to-nephron com-
munication have been discussed: by electrical signalling over
the vascular wall, and by modifying the local hydrostatic
pressure in the cortical radial artery, called hemodynamic
coupling.25,28 Hemodynamic coupling predicts out of phase
oscillations in adjacent nephrons, but it can only be effective
if the contraction of a single afferent arteriole can make an
appreciable difference in the vascular pressure. Our simula-
tion results show that adjacent cortical nephrons oscillate at a
single frequency and with small phase angle differences. The
effect of electrical coupling over the vascular wall over-
whelms the possible effect of hemodynamic coupling.

The third question relates to the limitations of the
present model. TGF provides an S-shaped response to flow
in the loop of Henle �Eq. �A2��, and direct measurements
show that the mechanism saturates at either high or low flow
rates with a narrow range of pressures over which effective
regulation is possible. This result is not consistent with other
experimental results; higher arterial pressures generate larger
oscillations.13 Two explanations for this discrepancy come to
mind: coupling within the nephron ensemble is responsible,

FIG. 7. �Color� Dynamical behavior
regimes as a function of arterial pres-
sure and �, the strength of nephron-
nephron coupling. Panel A: nephron 1,
the most superficial cortical nephron;
panel B: nephron 15, the shortest jux-
tamedullary nephron; and panel C:
nephron 22, the longest juxtamedul-
lary nephron.
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or the model is too simple. A more detailed nephron model,
which has a spatially distributed renal tubule, and a contrac-
tile mechanism in afferent arteriolar cells shows oscillations
in both TGF and the myogenic mechanism, and the ampli-
tudes of the oscillations increase monotonically with arterial
pressure over the range 95–130 mm Hg.11

At higher arterial pressures and higher values of cou-
pling strength each of the nephrons in the ensemble is ca-
pable of a bifurcation to chaos. The longer medullary neph-
rons appear from the simulation results to operate with
chaotic dynamics under most combinations of parameters
and arterial pressure that are found in normal animals. The
time series generated by these simulations retain the TGF
periodicity and strong synchronization that occurs under
these circumstances. The simulation suggests that the neph-
ron ensemble has considerable instability under normal cir-
cumstances, and that the instability increases at higher arte-
rial pressures and values of the coupling strength, which
occurs when blood pressure elevations become chronic.

The simulation predicts some results that are not present
in experimental measurements. Figure 7�a� shows a range of
chaotic solutions for the most superficial cortical nephrons
over an arterial pressure range from 103 to 113 mm Hg, and
a range of values of � from 0.25 to 0.50. These are well
within the range of experimental results obtained from nor-
mal animals, where only oscillations have been found. Chaos
evolves through multiple scenarios in high dimensional dy-
namical systems. One of the typical routes to chaos, well
known through results as well as from experiments, is the
transition from quasiperiodic oscillations.29,30 The transition
from an ergodic torus to chaos can be smooth and related to
the loss of smoothness of the torus and even to the appear-
ance of fractal structure without mixing of trajectories.31

Whether such transitions occur in the kidney has not been
examined, and the inevitable presence of noise may make it
impossible to determine with confidence whether there is a
quasiperiodic transition to chaos. Alternatively, the model of
nephron dynamics we used is quite simple, and the distribu-
tion of regimes may change when more realistic models are
used.
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APPENDIX: NEPHRON MODEL

The single nephron model19 consists of a set of five
coupled differential equations expressing the rate of change
of the proximal tubular pressure, the oscillatory dynamics of
the afferent arteriolar radius, and the delay associated with
the flow of fluid through the loop of Henle. The main non-
linearities of the model are related to the feedback regulation
of the arteriolar radius and to the relation between this ra-
dius, the degree of activation of the arteriolar smooth
muscles, and the equilibrium pressure in the arteriole. Other
nonlinearities are associated with the relation between the

radius and the flow resistance of the arteriole and between
the tubular pressure and the glomerular filtration rate.

The rate of change of tubular pressure Pt is given by the
rate of change of the fluid volume divided by the tubular
compliance Ctub,

Ṗt = �Ffilt�Pt,Pk
b,rb� − Freab − FHen�/Ctub, �A1�

where the incoming flow, the glomerular filtration rate
GFR�Ffilt is expressed as a function of the tubular pressure,
the pressure of the kth node of the cortical radial artery Pk

b,
and the radius of the afferent arteriole rb. Freab is the rate of
tubular fluid reabsorption in the proximal tubule, and FHen is
the outflow of the tubule into the loop of Henle.

Tubuloglomerular feedback �TGF� exerts its effects on
the afferent arteriole, reducing its radius in response to in-
creasing NaCl concentrations at the macula densa. In the
usual experimental evaluation of the TGF mechanism, the
flow rate into the loop of Henle is the independent variable,
glomerular filtration rate is clamped at 0, and one measures a
change in proximal tubule pressure as a reflection of the
resistance of the afferent arteriole. The effect of changes in
the loop of Henle flow can be expressed as

� = �max −
�max − �min

1 + exp���3X3/TFHen0 − S��
, �A2�

where �max and �min are the upper and lower activation
limits of the TGF mechanism, � is the maximum slope and S
is the inflection point of the S-shaped curve that character-
izes the TGF relation. � is usually referred to as the TGF
feedback gain. 3X3 /T is a delayed version of the flow into
the loop of Henle and FHen0 is a normalized value of the loop
of Henle flow.

The afferent arteriole is modeled as a damped second
order system

r̈ b + dṙ b =
Pav − Peq



, �A3�

where, as before, rb is the afferent arteriolar radius, normal-
ized to its resting value, and Pav and Peq are, respectively,
average and equilibrium values of the vascular pressure in
the arteriole. d is a damping coefficient, and 
 is a parameter
that controls the dynamic characteristics of the myogenic
oscillations. The subscript av on the pressure Pav refers to the
fact that this pressure is evaluated as the average hydrostatic
pressure along the length of the afferent arteriole,

Pav =
1

2
�Pk

b − �Pk
b − Pg��

Ra0

Ra
+ Pg� �A4�

with the glomerular pressure given by

Pg = Pv + Re�Pk
b − Pg

Ra
− Freab� . �A5�

Equations �A4� and �A5� express simple linear relations
between flow rates and pressure drops in the arteriolar sys-
tem. Pv is the venous pressure, and Ra and Re are the flow
resistances of the afferent and the efferent arterioles. � is the
fraction of the total afferent arteriolar length that responds to
the TGF signal, and Ra0 is a resting value of Ra,
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Peq = 0.006 exp�10�rb − 0.8�� + 1.6�rb − 1�

+ �� 4.7

1 + exp�13�0.4 − rb��
+ 7.2�rb + 0.9�� �A6�

is the hydrostatic pressure at which the afferent arteriole is at
equilibrium for a given muscular activation � and a given
radius rb. Terms that are independent of � represent the
nonlinear elastic deformation of the vascular wall, and terms
proportional to � represents the active �myogenic� response.
Equation �A6� was obtained through a combination of theo-
retical considerations and curve fitting to experimental re-
sults.

Regulation of pressures and flows in the nephron is
dominated by the negative feedback associated with the TGF
mechanism. However, there is a delay in this feedback asso-
ciated with the time it takes for a flow change to propagate
from the glomerulus through the tubule to the macular densa,
and with signal transmission from the macula densa cells to
the arteriolar smooth muscle cells. The model represents this
delay as a third order delay structure,

Ẋ1 = FHen −
3

T
X1, �A7�

Ẋ2 =
3

T
�X1 − X2� , �A8�

Ẋ3 =
3

T
�X2 − X3� , �A9�

where T is the total delay time, and 3X3 /T is the delayed
flow that serves as an input to the TGF mechanism �A2�.
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