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Abstract

Radiative corrections to the lifetime and angular correlation coefficients of neutron beta-decay are evaluated in effective field
theory. We also evaluate the lowest order nucleon recoil corrections, including weak-magnetism. Our results agree with those
of the long-range and model-independent part of previous cailcota In an effective theory the model-dependent radiative
corrections are replaced by well-defined low-energy constartie effective field theory allows a systematic evaluation of
higher order corrections to our results to the extent that the relevant low-energy constants are known.

0 2004 Elsevier B.\Open access under CC BY license.
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1. Introduction

The radiative corrections for betachy have been intensively investigated by a number of authors, and the prime
issue for such studies has been to deduce the value of the Cabbibo—Kobayashi—-Maskawa (CKM) matrix element
V.a from nuclear beta-decay data. An accurate valueVigr is important for testing the unitarity of the CKM
matrix. The most precise values &f, have been obtained from the accurate data of super-allowee @™
nuclear beta-decayd]. Neutron beta-decay measurements pre\ad alternative method of determining,,

a method which does not depend on #loeuracy of nuclear models. Neutrortdelecay experiments also provide
the most precise determination of the axial-vector coupling congtantyhich plays an important role in hadronic
weak-interaction reactionsdiuding many astrophysical processes. Tieéioally, pion beta-decay can also be used
for determiningV,, ;. Unfortunately, however, the currently avdila experimental data guion beta-decay are not
accurate enough to allow us to take full advantage of this merit, see, e.g., Ciriglian{2ét al.
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To extract an accurate value &f,; from neutron decay data, the theoretical expression for the neutron decay
rate including radiative aoections must be known with sufficient accuracy. The usual convention is to decompose
radiative corrections of orderinto two parts, the “outer” and the “inner” correctioji3s-5]. The “outer” correction
is a universal function of the electron energy, independent of the details of the strong interactions. The “inner”
correction stems from short-range terms and hadronictstreieffects. This hadronic structure dependence (and
additional nuclear structure depende in the case of nuclear beta-decaguses uncertainties in extracting
fundamental quantities lik&,, from experimental dath.

In this communication we present thesficalculation of radiative corréons to neutron beta-decay based on a
low-energy effective field theory (EFT). EFT provides symmetry constraints required by the underlying theory and
a systematic expansion scheme for the evaluation of the hadron current. As suggested by \[@irbergnergy
hadronic physics can be described by an effective field theory of QCD known as “chiral perturbation theory”
(xPT). The effective chiral Lagrangiatd, , reflects the symmetries and the pattern of symmetry breaking of
the underlying QCD. For massless quarks the QCD Lagrangian is chirally symmetric, but chiral symmetry is
spontaneously broken generating the pions as massless Goldstone bosons. Siacelthguark masses are very
small compared with the QCD scaliycp, and since the finite pion mass geated by the quark masses is small
compared to a typical strong interactiscale, it is reasonable to treat the kipchiral symmetry breaking terms
as small perturbationsC, is expanded in powers af/A4, <« 1 whereQ denotes the typical four-momentum
of the process in question or the pion mass, which represents the small explicit chiral symmetry breaking
scale. The chiral scaled, ~ 4nf, ~ 1 GeV (fr =924 MeV is the pion decay constant), is associated with
the “high-energy” processes that have been integrated out in arrivifig and with pion loops. The parameters
appearing inC,, called thelow-energy constants (LECs), effectively subsume the high-energy physics that has
been integrated out. In principle, these LECs could be determined from the underlying theory, but in practice the
LECs are determined phenomenologically from experimletata. Once the LECs are determined from appropriate
empirical data, thef, represents a complete Lagrangian up to a spelifiéral order. Furthermore, starting from
L, , one can develop, for the amplitude of a given process, a well-defined perturbation scheme by organizing the
relevant Feynman diagrams according to power@jai , . If all the Feynman diagrams up to a given powetin
Q/A, are taken into account, then the results depend only on the LECs up to this order, with the contributions of
higher order terms suppressed by an extra powel of, .

Over the past decadePT has been successfully applied to many processes; for reviews, see, e.d8,BEfs.
Chiral Lagrangians including the photon field have bdeweloped and applied to, e.g., pion—nucleon scattering,
see Refs[10,11] Our present calculation of the radiative @mtions to neutron beta-decay is an EFT based on
the spirit of the chiral Lagrangian approach. Thus we write down an effective Lagrangian, appropriate to neutron
beta-decay, obeying chiral symmetry and involving aimum set of LECs and use the Lagrangian to estimate the
relevant amplitudes to leading, next-to-leading, and next-to-next-to leading orders (LO, NLO) M the 0/Ay
expansion. In fact, since the typical energy transfer of the reaction is much smaller than the pion masithe *
expansion” here has a special feature to be explained in the next section.

The results of our EFT calculation confirm the expression for the model-independent universal function derived
by Sirlin [3]. Furthermore, our calculation provides expressions for corrections of @tde¢he angular correlation
coefficients in neutron beta-decayeWill show that the short-distance pt@mena including th model-dependent
hadronic radiative corrections can be condensed into two LECs, one relevant to the Fermi cGpséartt the
other to the axial coupling constagit. The values of these LECs need to be determined by experiments. In order
to have crude order-of-magnitude estimates of our LECs, we also compare our results with the “inner” radiative
corrections obtained in the standard calculations. Furthermore, we shall argue that, provided the LECs involved in

1 A new calculation of these radiative corrections, obtained with thedard model of electroweak interactions, has been reported in a
recent preprinf6]. The results however seem to differ markedly from the classic calculations of Sirlif&t3).
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our calculation are of a “natural” sizéhe neutron-decay rate and angular clatien coefficients calculated here
are expected to have a precision better thar?10

2. Effectivetheory for neutron beta-decay

Since neutron beta-decay is a low energy process, ittisraato use here heavy-baryon chiral perturbation
theory (HBx PT), see, e.g., Ref§3,9]. In fact the appropriate amplitude, however without radiative corrections,
can be obtained from HBPT calculations of muon capture on a protort- p — n + v, which have been carried
out including NLO correction termg§12—-15] Neutron beta-decay, however, has a feature not shared by muon
capture, namely several different expansionesal particular, the maximum energy releasdf =m, —m, —

m. = 0.782 MeV, is very small compared to the pion masg and the nucleon massy = (m, + m,)/2.
Correspondingly, if we denote b@ the typical four-momentum transfer of the proceSsy> AM is also very
small. We therefore introduce here a particul@y2,,” expansion in whichQ, unlike most HB(PT calculations,
only representg). The chiral symmetry breaking scake,; /A, ~ 0.14, will be accounted for separately. The
nucleon recoil terms are governed by the sa@leny ~ 0.8 x 10~2, and they are NLO corrections to the LO
expression. The scal@/my ~ Q/AX is numerically of the same magnitude @s(27) ~ 10~3, governing the
radiative corrections, which are our primary interestg the fine structure constant). Therefore, for our present
purposes, we consider tag/(27) andQ/m y corrections to be of the same order.

The relevant effective Lagrangiafg, for the neutron decay process reads

Eﬂ = Acevy + ACNN)/ + »CeuNN, (1)

whereL.,, is the lepton—photon Lagrangiafiyy, describes the heavy nucleon interacting with a photon, and
Leoonn gives the effectivel — A interaction between the lepton and the heavy nucleon current. Since the pion
mass is much heavier than the typical momentum scale of the reagtiat,;, we suppress the pion fields of the
chiral LagrangianZ,, and inLg we have retained only the interactions between the heavy nucleon field, lepton
current, and photons. Later in the text, we will discuss the role of the pions in the present calculation. Thus one
has, through LO and NLO,

1 v 1 (%4 T - T .
Levy = —ZF“ Fu — 25_,4(8 . A)2+ <1+ Eel)lffe(l)/ D)o —meYeVe + Yroiy - 0, (2
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+ ﬁl\_/r‘*‘[i(v”v” - gw)(g — ), — 2ifty[S",S - 0+ 5)] —2iga"S- - 5)]N}’
(4)

whereF,, = 9,A, — 3,A, and D, is the covariant derivative of QED. THg is the gauge parameter and we
choose the Feynman gauge = 1. Thev* is the velocity vector of the heavy-baryon formalism, which we take
asv* = (1, 6), andS* is the nucleon spin operatos2 = (0, o). The isovector magnetic moment in the NLO La-
grangianisiy — uy = 4.706. The quantitiess, e2, ey ande, are defined as the LECs of the theory. The LECs
ande; are thex-order corrections related to the wave-function normalization factors of the electron and proton, re-
spectively. The LEC8y ande4 are thex-order corrections to the Fermi anc&ow—Teller amplitudes, where we
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Fig. 1. Feynman diagrams for neutron beta-decay up to erdkr diagram (a), the four-fermion vertex can represent either the leading order
(LO) or next-to-leading order (NLO) vertex, the latter being/a:}y correction to the former. The crosses on the electron and nucleon lines in
diagrams (c) and (e) are vertices involving the LE&sandey, respectively. The vertex of diagram (g) is given by the LE¢sande 4 .

have factored out the common coefficiéhﬁ V.a/~/2. Those LECs are used to absorb infinities coming from the
virtual photon-bops and take into account shortxge radiative effects. We rematiat some of those LECs contain
contributions from, e.gg;’s for the one nucleon sector without leptdf®8] and X; s for the meson sector with lep-
tons[16]in x PT2 As is conventional, the parameters of the initial Lagrangian, e.g., the Fermi co&stamd the

axial coupling constarg 4, are taken as the coupling constants in the absence of radiative corrections and in the chi-

ral limit, m, = 0. Thusin particular, we assume that the Fermi conséntﬁ Gr=1166x 105GeV 2, as de-

termined from muon-decay. As we discus#hia next paragraph, higher order hawic corrections,.e., pion-loops,

renormalize these “bare” couplings to their physical values in the absence of electromagnetic effegts,-e.g.,

ga. Furthermore, radiative effects give rise to additional corrections to the coupling constangsd g, which

depend on the process being considered. These radiative corrections will be displayed explicitly in the present work.
We calculate the Feynman diagrams showifrig. 1, where the vertices are detened by the Lagrangian,

Lg, given above. Several remarks are in order on the diagrarRginl. Consider first diagram (a), which does

not involve radiative corrections. Diagram () is a tree-diagram for the LO and NLO amplitudes. As regards the

LO contribution, one may wonder why we do not consider here the pion-pole diagram (not shown). The pion-

pole diagram, which is responsible for the induced pseudoscalar coupling, formally belongs to LO and hence

would be included in normal circumstances. However, the extremely small momentum transfer involved in neutron

beta-decayQ « m,) drastically suppresses the pion-pole diagram contribution. Due to the presence of the pion

propagator and a momentum of ord@rat each vertex, the pion-pole diagram scales (i@gm, )% ~ 3 x 10°°

relative to the dominant LO terms. The accuracy of owspnt treatment does not warrant the inclusion of this

2 Unfortunately the connection between the LEgsande4 and theg; and X; of Refs.[10,16]is not straightforward. Thg; and X;
originate in Lagrangians which involve only subsets of the degreegefim considered here and thus geteeradiative corrections to only
particular vertices in the diagrams for neutron beta-decay. Their contribution can be abso¢bedride 4, butey, e4 would also contain
contributions from the LECs of a yet-to-be-calated Lagrangian involving the nucledapton current, and photons simultaneously.
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tiny pion-pole contribution, and we will not consider it in the main body of our calculation. In the concluding
section, however, we will briefly discuss the LO pion-pole term and its radiative corrections. Diagranki@g)in
also includes the NLO vertex coming from the nucleon recoil tesm@/my featuring inEq. (4) Since we
are treating thed/my anda/(2r) corrections as contributions of the same order, we will discuss these recoil
terms later in the text; however, in evaluating radiative corrections, we need not consider the recoil terms since
these corrections would be of higher ordewr/(27) x uy Q/(2my) ~ 1078, At order N°LO there occur two
kinds of contributions. Higher order recoil corrections scalé@gm y)2 ~ 10~ and therefore can be neglected.
The remaining RLO terms (diagrams not shown) come from pion-loops and the corresponding hadronic LECs
which would appear in HBPT Lagrangian at this order, see, e.g., R§8s9]. The pion-loop diagrams which
generate terms proportional @7, i.e., terms representing the hadronic vertex form factor effects, can be neglected,
since their contributions are suppressed by a factcﬂQ)fAX)2 ~ 1076 relative to the dominant LO terms. The
remaining contributions of the pion-loops, which contain terms proportionah;q’Ax)z, renormalize the bare
quantities such as the “bare” axial-vector coupling cons§a;ntThese(mn/AX)2 terms and the corresponding
hadronic LECs are absorbed into the renormaliggdo that to NLO order,gs = g1+ O((mn/AX)Z)], see,
e.g., Eq. (4.50) in Ref8] or Eq. (50) in Ref[12]. Radiative corrections to the pion loop diagrams are suppressed
by a scale(mﬂ/AX)2 ~ 2 x 102 relative to the leadingadiative corrections, and therefore their contributions can
be ignored in the present calculation.

The above discussion indicates thiat the accuracy in question, we needyobnsider radiative corrections
of the following type. Of the contributions topologically represented by diagram (a), consider those involving the
LO vertex and evaluate all possible radiative corrections applied to these LO diagrams. Diagrams (b), (d), (f) in
Fig. 1are one-photon loop corrections for the electron profzagidne nucleon propagator, and the four-point vertex
function, respectively. Meanwhile, diagrams (c), (e) and (g) represent the contributions of the counter terms, the
e1, e2, ey andey terms, in the Lagrangian. These LECs remove the ultraviolet divergence arising from the loop
diagrams (b), (d) and (f). As is well known, the infrared divergences contained in diagrams (b), (d), (f) should
be canceled by the infrared divergences in the bremsstrahlung diagrams (h)%addi)ve have confirmed this
cancellation explicitly.

3. Thecorrelation coefficientsand the decay rate from EFT

A general expression for the differential neutron decay ddtds well known[18] for a case wherein only the
neutron is polarized, and in which the nucleon recoil and radiative corrections are ignored:

d (GFlud)Z 2 - 2
= 1+3 E E
dEedSZf,gdSZﬁU (2m)5 ( + gA)|Pe| el
+ = N De X Dy
1 pv) +b A B p p ‘ c
|: a(ﬂ ) (Ee) a ( Pt E.E, )] ()

HereE. andp,. (E, andp,) are the electron (neutrino) energy and momentiis,the neutron spin polarization
vector,B = p./E.,anda, b, A, B, D are the correlation coefficient$ we calculate diagram (a) iRig. 1in the LO
approximation, and if we neglect the nucleon recoil terms in the phase space factor, then our calculation reproduces
Eq. (5) and furthermore we recover the standard lowest order expressions for the correlation coefficients as given
in [18]

gt 242 268420
1+3g3 1+3g3 1+ 3¢4

(6)

3 Recently these bremsstrahlung diagrams have been studied by Bernard et al. for radiative neutron betasdgcay; + ¢ + y, in EFT
[17].



S Ando et al. / Physics Letters B 595 (2004) 250-259 255

whereg 4 is the physical axial coupling constant. The coefficieit Eq. (5) which reflects the presence of scalar

and tensor weak couplings, vanishes in our LO calculation, since our Lagrangian only contains the standard vector
and axial vector weak interaction. The parameden Eq. (5)is related to time-odd correlations and hence it also
should vanish in the LO calculation since our Lagrangidh isvariant. However, “inducedD terms can appear at

higher orders. For instance, interference between the wegiketism and the radiative corrections would generate

a D term of order 10° [19].

As we proceed to include the higher order radmtdiagrams generated by the LagrangiarEgf (1) we
encounter infinities coming fra the photon-loop diagrams Kig. 1 In order to eliminate these infinities, we need
to introduce counter terms with the corresponding LECsur Lagrangian. We renormalize these LECs in the
usual effective field theoretical method based on the dimensional regularization of loop inf@@glShe finite
LECs renormalized at the scaleare given b§

1 31
ef A =ev.a = Slerted) + 5 [g —vE +In(4n) + 1] + 3'”(:7%)' @)

This renormalization is adequate to remove all the itiia associated with virtlighotons which we encounter
in this calculation. The differdial neutron decay rate includinbe radiative corrections and/ y corrections is
found to be

dr _(GpVu)®?  F(Z.E.)|p.|E, M ®)
dEed‘Qﬁe d‘QAu (27[)5 mn[Ep+Ev+Ee(/§' ﬁv)] ’
where we have retained the relativistic expression for the phase factor, and
o o ~
\M|?=m,m,E,E, (1 + 5e{f) (1 + Zéé}’)@(&)(l +333)
x {1+ (1+ iag2>>c1(Ee>B
2w
a S 1.z = 1A A
+ (1“1‘ Z(Séz)) [C2(Ee) + C3(Ee)B - pv]n B+ [C4(Ee) + Cs(Ee)p - pv]n : pv}~ 9)

The explanation of the quantities appearing in this expression will be given below. We remark that, in order to
arrive at this factored form, we haveeftly exploited the fact that terms of ord@r/27)?, («/27)(Q/my) and
(Q/my)? can be ignored to the order of accuracy of our concern.

In Eq. (8)the Coulomb part of the radiative correction hagb extracted as an overall factor and incorporated
into the usual Fermi functio# (Z, E,) >~ 1+ (a/Zn)Séc"“D =1+ an/B, for Z = 1. In Eq. (9)the finite LEC,
e{§, featuring in the facto(l + %e{f) subsumes those short-range radiative corrections to the Fermi coﬁﬁtant
which have been integrated out in arriving at our effective Lagrangian. This point will be further discussed in the
final section. The axial coupling constapt,, which has been renormalized by pion loops, is multiplied by short-
range radiative corrections involving the finite LE€ as well aX. For convenience, and to simplify the results,
we incorporate this radtive correction taz4 into g4 defined by

- o
gA=84 [1+ E(eff — e"ﬁ)], (10)

and thisg4 has been used iag. (9) Recall thatg4 corresponds to the physical value, with all short-range radiative
corrections removed.

In Eq. (9) 5P represents the model-independent radiative correctio@ o which depends only on the
kinematics of the electron, whiléz) gives the model-independent radiative corrections to the coefficients of the

4 The convention for the dimensional parametersed here isd = 4 — 2¢.
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angular correlation term;§,- py andn - E The explicit expressions fd}ﬁl) and8(§2) are:
1482 (1+8\ 1 1+B8\ 4 ( 28
1 _ — ZIn? _
o =an() g (1) -5 (i55) < 5 (ehs)
g (355) 2 [n(5) <5 () -2
28 1-8 me 3 E, 2
EM_EN? 1 (148
*( E. )12ﬂ|<1—ﬂ>’ o
2 max 2
=15 () (T ) P ()
“ p 1-p E, 32 |28 \1-8

EM—EN? 1 [1-62 (148
() el ()

(12)
Here E["®™ = (m2 — m2 + m2) /2m,, is the maximum electron energy, aid:) is the Spence function defined by
[ d
t
L(z)=/7ln(1—t). (13)
0
The factorCo(E,) contains the recoil corrections to the overall rate. It is given by
1 max mf ~2 ~ 2
Co(Ee) =1+ —————1(85 — 2uvga + 1) EM™ — —4(1+ %) + 2uvga(B® + 1)E. . (14)
my(1+ 3gA) E,

where we have useHl, = E"® — E, + O(1/my). The other coefficient§; (E.) (i =1,2,...,5) are given by

_ ppmax
Cl(Ee)_a{l—i— [(gA +2,ung+1)m +( 4+ DIBuvgaE, —AE, - A(gA+MV)]“’ (15)
my l+3gA Ee (A_l)(1+38A)
@3- D@A+1v) |, max E(uy =1 5 §§+2§Auv+1“
Ca(E;)=A{14+ — EMX_ ) = g2 tA T T (16
2(Ee) {+MN|: ZgA(1+3gA) ( )+ ga—1 p 1+3g% (16)
~FE,
Co(e) = ALEEAZ 1Y) (17)
MmN & A
E.p?(8% —1(Ga—iv)  (8a+uv)(@a —1)? m ]}
Ca(E)=Bl1+ — e — E" 18
a(Fe) = { N[ 254(1+33%) (gA+1)(1+3gA)( ”) (18)
Cs(Eo) = B (gzﬁi"”(Emax E.). (19)
m

wherea, A, B are given byEq. (6)with the substitutiorgs — g4. It is to be noted thaEq. (9)exhibits angular

dependences that are missinggq. (5) These extra angular dependences arise from the NLO contributions that

have been included in the'i y corrections (which leads t6q. (9) but ignored in the LO evaluation (which leads
to Eqg. (5). It has been a common practice to approximate the overall kinematic fadiay. i(8) by applying an
expansion in 1my. If convenient, one could use the following approximation:
mpEg
Ep+Eu+Ee,§'ﬁv

~ (EM*_ E,) [1+ i(3E — EMaX_ 3Ee;§-ﬁv)}, (20)
my
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where we have used

E,~ (EM™ - E,) [1+ Ee a1-8- ﬁv)]. (21)

my
The angular dependence appearingin (20)needs to be considered simultaneously with the angular dependences
contained irEq. (9)

The model-independent radiative correctﬁé}? in Eg. (11)agrees with that obtained by Sirlj&], while 6&2)
in Eq. (12)also agrees with the result reported by Garcia and M29h We note that recoil corrections have also
been calculated in the literature using thewentional methods. For instance, Wilkind@4] evaluated corrections
to the decay rate and the correlation coefficianand Bilen’kii et al.[22] computed corrections to the decay rate
and the correlation coefficieat Furthermore, Holsteif23] considered recoil corrections to all the observables
for general nuclear beta-decays. Oasults for the recoil corrections agree with those found in these previous
studies.

4, Discussion and conclusions

As mentioned in the introduction, aime issue in the studiesf neutron beta-decay is to deduce the precise
value ofV,,4 from the experimental data. Another issue is the extraction of the valgige fvbm the data. We shall
discuss here the significance of our presentudation in connection with these two issues.

To obtain the actual numerical values 8f; and g4 we need to know the values of the LEQ&{E and
eﬁ, pertaining to the lepton-current nucleon-current vertex. These LECs parameterize short-distance physics not
explicitly included in the effective Lagrangiafig, and they need to be determined empirically using appropriate
observables. This is an important line of studies for the future. Here, instead, we discuss simple order-of-
magnitude estimates of the LE®, which is the most important LEC in neoh beta-decay. Based on the general
estimation of a photon-loop diagram, one may expect the natural scale for this parameter to be of the order of
(a/2m)eR ~ 2 x 1072, with e® ~ In(m,/A,). To obtain another rough estimateef we may compare our result
for the neutron decay rate obtained frég. (8)with Eq. (6)of Marciano and Sirli{5]. Thus we introduce the
premise

R 2 —4|n(m—W) +3|n("ﬂ) +|n(’"—w> +2C + A, (22)
4 my my ma

wheremy, mz are the masses of tH#, Z bosons ana: 4 is the axial mass scale. As is customary, we define the
Fermi constant » of muon decay by absorbing the factor 13« /47) In(mw /mz) into G r [24]. The contribution
In(mw/mz) in Eq. (22)is actually the difference between the contribution of Zabox diagram3in neutron beta-

decay and the contribution of ttiebox diagrams in muon decay. Eq. (22) the major contributions to the right-

hand side originate from the shortage virtual photon corrections to the Rartransition from the weak vector and
axial-vector vertices. The former gives the contribution,3dw /my), and the latter ltmyw /m4). The C in the
expression is the long-range model-dependent correctioning from the axial-current and anomalous magnetic
moments of the nucleon, and is proportionaltg g4) wherepu s is the isoscalar magnetic moment of the nucleon.

A value of 20 = 1.77 was found in Ref5]. In an HBx PT calculation, however, we have verified that a correction
estimated from the diagrams 6f is of higher orderx «/(27)(Q/my)? and can be neglected (s8ection 2.

Finally, the A, term, which includes a short-range strong-interaction correction, is very siatt —0.34 [5].

In this connection, it might be of interest to decompose, following Cirigliano €2§l.our e{§ into two parts:

eR = e3P + &R, The P term describes the universal short-distance physics of electroweak theory discussed by

5 The Z-box diagrams here refer to diagrams like the onEign 1(f), with the photon replaced by tHe boson; see Fig. 3 in Ref24].
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Sirlin [24], while theé{f term describes short-distance hadronic physics. It is possible that ttegm is associated
with the&® term. The above considerations lead to a rough estiragte; 20, i.e.,[a/(27)]eR ~ 4 x 1072, which
is of a natural size as discussed above. The above corapalso leads us to expect thlaé dominant contribution
to ef comes from the short-rangdectroweak corrections.

The LECef enters only as a radiative correctiongd@ in Eq. (10) and therefore it may seem that there is no
significant motivation to rewve the radiative correctio4r$‘5(e§ — e{f) from g4 defined inEq. (10)and deduce
the values ofg4 . Indeed, if we limit ourselves to neutron betaedy, all the observables can be expressed using
g4 without referring tog4. However, since radiative corrections are specific to individual processes, there should
be cases wherein the removal g;lf(eff — e{f) from g4 has physical consequences and hedfﬁedoes play a
significant role. A possible example is the Goldberger—Treiman relagiony = fr g-~n, Whereg, y is the pion—
nucleon coupling constant. To elaborate on this point, it is useful to illustrate processes which necessitate the
introduction of the LECeﬁ. To this end, we consider diagrams containing the exchange of a pion (pion-pole) plus
a virtual photon. These diagrams involve three distinct one-particle-irreducible vertex functions. The first type is
a nucleon—nucleon-lepton—lepton four-point vertex in which a virtual photon couples to both the nucleon and the
leptonic currents. This class of diagrams requires a counter term invadyiagsociated witlg 4. The second type
is a lepton—lepton—pion three-point vertex wherein a virtual photon only couples to the pion, the pion—lepton vertex
or the lepton, and this vertex is related to the pion decay congtarfbome of the LECs arising from this type
of diagrams can be found in the chiral Lagrangian considered by Knecht[&6hlThese LECs are also related
to the “inner” radiative corrections aallated for pion beta-decay, see, e[@5]. The third type is a nucleon—
nucleon—pion vertex in which a virtual photon only couples to the pion, the pion—nucleon vertex or the nucleon,
and this vertex is related t@,y. The corresponding LECs are tlggs appearing in Miller and Mei3ner’s work
[10]. To our knowledge, however, no systematic HBT study of the Goldberger—Treiman relation including the
radiative corrections associated with each of the vesthas been done so far. In fact the radiative correetfon
really has not been fully studied yet in the standgsdraach. Instead it has usually been assumedeﬁai e{§,
which makes the radiative correctiong@ small. Such radiative corrections could contribute to the evaluation of
the Goldberger—Treiman discrepancy, but there is clearly not yet enough information to determine whether they
turn out to be significant in comparison with the chiral symmetry breaking term.

As discussed iisection 2 we have not included in our work radiative corrections involving the NLO vertex or
pion loop diagrams. The former should be suppressed at least by a fagtp@f(2m ) ~ 2 x 10-3, and the latter
by a factor of(mJT/AX)2 ~ 2 x 102 relative to the leading radiative corrections. Also omitted from our work are
the isospin breaking effects, which are naturally incorporated in #h&@hNheavy-baryon chiral Lagrangi4] not
explicitly written in this Letter. Recently, Kais§26] studied isospin violation corrections €y V,,; using HBy PT
and found that the isospin breaking corrections are of the orderof. @ the accuracy of our present concern,
we can safely neglect the isospin violation corrections.

We now summarize. Using the effective field theory foutnen beta-decay, we have calculated the decay rate of
the neutron and the angular correlation coefficients including recoil corrections and radiative correctionscaf order
We have included all non-radiative terms through.[® except those which are neglide because of the extremely
small value ofQ for neutron beta-decay. Our results reproduce theehindependent radise corrections and
recoil corrections in the literature. The short-range raghatorrections of the earlier calculations are replaced in
our theory by the two finite radiative LECs{ ande® whereef affectsG r and the differencesff — e, affects
ga. Via comparison with the results of the existing model calculations, we have argued that the vafués of
of a natural scale. An advantage of our EFT approach is the possibility of evaluating higher order corrections in
a systematic way, and the possibility to parameterize the strong interaction dependent contributions in terms of
well-defined LECs, which can in principle be obtained from independent experiments. The next order corrections
in the EFT for neutron beta-decayesgstimated to be of the order10or smaller. Therefore, to the extent that the
LECs involved in the present calculation are of a “natural” size (as discussed above), we expect our expressions
for the rate and the angular correlation ffiméents to be accurate to better tharn £0
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