42 research outputs found

    High-contrast imaging polarimetry of exoplanets and circumstellar disks

    Get PDF
    Understanding the formation and evolution of planetary systems is one of the most fundamental challenges in astronomy. To directly image and study young exoplanets and the circumstellar disks they form from, dedicated high-contrast imaging instruments are built. Several of these instruments have polarimetric modes that are particularly powerful to reach the large contrasts required to directly image these objects as well as to characterize them. This thesis aims to improve the polarimetric sensitivity, accuracy, and capabilities of high-contrast imaging polarimeters for the detection and characterization of exoplanets and circumstellar disks. In addition, this thesis presents the first direct detections of linear polarization from self-luminous planetary mass companions. The focus of this thesis is mostly on ground-based high-contrast imaging, in particular with the instrument SPHERE-IRDIS at the Very Large Telescope. This thesis covers many aspects of high-contrast imaging polarimetry, ranging from theoretical work, calibrations, and the development of new observing techniques to actual scientific polarimetric measurements and astrophysical interpretation.</p

    HD 142527: quantitative disk polarimetry with SPHERE

    Get PDF
    We present high-precision photometry and polarimetry for the protoplanetary disk around HD142527, with a focus on determining the light scattering parameters of the dust. We re-reduced polarimetric differential imaging data of HD142527 in the VBB (735 nm) and H-band (1625 nm) from the ZIMPOL and IRDIS subinstruments of SPHERE/VLT. With polarimetry and photometry based on reference star differential imaging, we were able to measure the linearly polarized intensity and the total intensity of the light scattered by the circumstellar disk with high precision. We used simple Monte Carlo simulations of multiple light scattering by the disk surface to derive constraints for three scattering parameters of the dust: the maximum polarization of PmaxP_{\rm max}, the asymmetry parameter gg, and the single-scattering albedo ω\omega. We measure a reflected total intensity of 51.4±1.551.4\pm1.5 mJy and 206±12206\pm12 mJy and a polarized intensity of 11.3±0.311.3\pm0.3 mJy and 55.1±3.355.1\pm3.3 mJy in the VBB and H-band, respectively. We also find in the visual range a degree of polarization that varies between 28%28\% on the far side of the disk and 17%17\% on the near side. The disk shows a red color for the scattered light intensity and the polarized intensity, which are about twice as high in the near-infrared when compared to the visual. We determine with model calculations the scattering properties of the dust particles and find evidence for strong forward scattering (g≈0.5−0.75g\approx 0.5-0.75), relatively low single-scattering albedo (ω≈0.2−0.5\omega \approx 0.2-0.5), and high maximum polarization (Pmax≈0.5−0.75P_{\rm max} \approx 0.5-0.75) at the surface on the far side of the disk for both observed wavelengths. The optical parameters indicate the presence of large aggregate dust particles, which are necessary to explain the high maximum polarization, the strong forward-scattering nature of the dust, and the observed red disk color.Comment: 20 pages, 14 figure

    Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS):Late Infall Causing Disk Misalignment and Dynamic Structures in SU Aur

    Get PDF
    Gas-rich circumstellar disks are the cradles of planet formation. As such, their evolution will strongly influence the resulting planet population. In the ESO DESTINYS large program, we study these disks within the first 10 Myr of their development with near-infrared scattered light imaging. Here we present VLT/SPHERE polarimetric observations of the nearby class II system SU Aur in which we resolve the disk down to scales of ~7 au. In addition to the new SPHERE observations, we utilize VLT/NACO, HST/STIS and ALMA archival data. The new SPHERE data show the disk around SU Aur and extended dust structures in unprecedented detail. We resolve several dust tails connected to the Keplerian disk. By comparison with ALMA data, we show that these dust tails represent material falling onto the disk. The disk itself shows an intricate spiral structure and a shadow lane, cast by an inner, misaligned disk component. Our observations suggest that SU Aur is undergoing late infall of material, which can explain the observed disk structures. SU Aur is the clearest observational example of this mechanism at work and demonstrates that late accretion events can still occur in the class II phase, thereby significantly affecting the evolution of circumstellar disks. Constraining the frequency of such events with additional observations will help determine whether this process is responsible for the spin-orbit misalignment in evolved exoplanet systems.Comment: 18 pages, 12 figures, published in ApJL on 18-02-202
    corecore