10 research outputs found

    Vibrational fingerprints of residual polymer on transferred CVD-graphene

    Get PDF
    The use of vibrational sum-frequency spectroscopy (VSFS) to study transferred graphene, produced by chemical vapour deposition, is presented. The VSF spectrum shows a clear CH stretching mode at ∼2924 cm−1, which is attributed to residue of the polymer used for the transfer. This makes VSFS a powerful tool to identify adsorbates and contaminants affecting the properties of graphene

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Vibrational fingerprints of residual polymer on transferred CVD-graphene

    No full text
    The use of vibrational sum-frequency spectroscopy (VSFS) to study transferred graphene, produced by chemical vapour deposition, is presented. The VSF spectrum shows a clear CeH stretching mode at ~2924 cm⁻¹, which is attributed to residue of the polymer used for the transfer. This makes VSFS a powerful tool to identify adsorbates and contaminants affecting the properties of graphene

    Substrate dependence of graphene reactivity towards hydrogenation

    No full text
    The ability to functionalize graphene with several methods, such as radical reactions, cycloadditions, hydrogenation, and oxidations, allows this material to be used in a large range of applications. In this framework, it is essential to be able to control the efficiency and stability of the functionalization process—this requires understanding how the graphene reactivity is affected by the environment, including the substrate. In this work we provide an insight on the substrate dependence of graphene reactivity towards hydrogenation by comparing three different substrates: silicon, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2). Although MoS2 and h-BN have flatter surfaces than silicon, we found that the H coverage of graphene on h-BN is about half of the H coverage on graphene on both silicon and MoS2. Therefore, graphene shows strongly reduced reactivity towards hydrogenation when placed on h-BN. The difference in hydrogenation reactivity between h-BN and MoS2 may indicate a stronger van der Waals force between graphene and h-BN, compared to MoS2, or may be related to the chemical properties of MoS2, which is a well-known catalyst for hydrogen evolution reactions

    Characterisation, coverage, and orientation of functionalised graphene using sum-frequency generation spectroscopy

    No full text
    We report the unambiguous detection of phenyl groups covalently attached to functionalised graphene using non-linear spectroscopy. Sum-frequency generation was employed to probe graphene on a gold surface after chemical functionalisation using a benzene diazonium salt. We observe a distinct resonance at 3064 cm1 which can clearly be assigned to an aromatic C–H stretch by comparison with a self-assembled monolayer on a gold substrate formed from benzenethiol. Not only does sum-frequency generation spectroscopy allow one to characterise functionalised graphene with higher sensitivity and much better specificity than many other spectroscopic techniques, but it also opens up the possibility to assess the coverage of graphene with functional groups, and to determine their orientation relative to the graphene surface

    Fine mapping of the Cepaea nemoralis shell colour and mid-banded loci using a high-density linkage map

    No full text
    Molluscs are a highly speciose phylum that exhibits an astonishing array of colours and patterns, yet relatively little progress has been made in identifying the underlying genes that determine phenotypic variation. One prominent example is the land snail Cepaea nemoralis for which classical genetic studies have shown that around nine loci, several physically linked and inherited together as a ‘supergene’, control the shell colour and banding polymorphism. As a first step towards identifying the genes involved, we used whole-genome resequencing of individuals from a laboratory cross to construct a high-density linkage map, and then trait mapping to identify 95% confidence intervals for the chromosomal region that contains the supergene, specifically the colour locus (C), and the unlinked mid-banded locus (U). The linkage map is made up of 215,593 markers, ordered into 22 linkage groups, with one large group making up ~27% of the genome. The C locus was mapped to a ~1.3 cM region on linkage group 11, and the U locus was mapped to a ~0.7 cM region on linkage group 15. The linkage map will serve as an important resource for further evolutionary and population genomic studies of C. nemoralis and related species, as well as the identification of candidate genes within the supergene and for the mid-banding phenotype

    Pregnancy and neonatal outcomes of COVID -19: coreporting of common outcomes from PAN-COVID and AAP-SONPM registries

    No full text
    Objective Few large cohort studies have reported data on maternal, fetal, perinatal and neonatal outcomes associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection in pregnancy. We report the outcome of infected pregnancies from a collaboration formed early during the pandemic between the investigators of two registries, the UK and Global Pregnancy and Neonatal outcomes in COVID‐19 (PAN‐COVID) study and the American Academy of Pediatrics (AAP) Section on Neonatal–Perinatal Medicine (SONPM) National Perinatal COVID‐19 Registry. Methods This was an analysis of data from the PAN‐COVID registry (1 January to 25 July 2020), which includes pregnancies with suspected or confirmed maternal SARS‐CoV‐2 infection at any stage in pregnancy, and the AAP‐SONPM National Perinatal COVID‐19 registry (4 April to 8 August 2020), which includes pregnancies with positive maternal testing for SARS‐CoV‐2 from 14 days before delivery to 3 days after delivery. The registries collected data on maternal, fetal, perinatal and neonatal outcomes. The PAN‐COVID results are presented overall for pregnancies with suspected or confirmed SARS‐CoV‐2 infection and separately in those with confirmed infection. Results We report on 4005 pregnant women with suspected or confirmed SARS‐CoV‐2 infection (1606 from PAN‐COVID and 2399 from AAP‐SONPM). For obstetric outcomes, in PAN‐COVID overall and in those with confirmed infection in PAN‐COVID and AAP‐SONPM, respectively, maternal death occurred in 0.5%, 0.5% and 0.2% of cases, early neonatal death in 0.2%, 0.3% and 0.3% of cases and stillbirth in 0.5%, 0.6% and 0.4% of cases. Delivery was preterm (< 37 weeks' gestation) in 12.0% of all women in PAN‐COVID, in 16.1% of those women with confirmed infection in PAN‐COVID and in 15.7% of women in AAP‐SONPM. Extreme preterm delivery (< 27 weeks' gestation) occurred in 0.5% of cases in PAN‐COVID and 0.3% in AAP‐SONPM. Neonatal SARS‐CoV‐2 infection was reported in 0.9% of all deliveries in PAN‐COVID overall, in 2.0% in those with confirmed infection in PAN‐COVID and in 1.8% in AAP‐SONPM; the proportions of neonates tested were 9.5%, 20.7% and 87.2%, respectively. The rates of a small‐for‐gestational‐age (SGA) neonate were 8.2% in PAN‐COVID overall, 9.7% in those with confirmed infection and 9.6% in AAP‐SONPM. Mean gestational‐age‐adjusted birth‐weight Z‐scores were −0.03 in PAN‐COVID and −0.18 in AAP‐SONPM. Conclusions The findings from the UK and USA registries of pregnancies with SARS‐CoV‐2 infection were remarkably concordant. Preterm delivery affected a higher proportion of women than expected based on historical and contemporaneous national data. The proportions of pregnancies affected by stillbirth, a SGA infant or early neonatal death were comparable to those in historical and contemporaneous UK and USA data. Although maternal death was uncommon, the rate was higher than expected based on UK and USA population data, which is likely explained by underascertainment of women affected by milder or asymptomatic infection in pregnancy in the PAN‐COVID study, although not in the AAP‐SONPM study. The data presented support strong guidance for enhanced precautions to prevent SARS‐CoV‐2 infection in pregnancy, particularly in the context of increased risks of preterm delivery and maternal mortality, and for priority vaccination of pregnant women and women planning pregnancy. Copyright © 2021 ISUOG. Published by John Wiley & Sons Ltd

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor

    Cognitive and psychiatric symptom trajectories 2–3 years after hospital admission for COVID-19: a longitudinal, prospective cohort study in the UK

    No full text
    Background: COVID-19 is known to be associated with increased risks of cognitive and psychiatric outcomes after the acute phase of disease. We aimed to assess whether these symptoms can emerge or persist more than 1 year after hospitalisation for COVID-19, to identify which early aspects of COVID-19 illness predict longer-term symptoms, and to establish how these symptoms relate to occupational functioning. Methods: The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study of adults (aged ≥18 years) who were hospitalised with a clinical diagnosis of COVID-19 at participating National Health Service hospitals across the UK. In the C-Fog study, a subset of PHOSP-COVID participants who consented to be recontacted for other research were invited to complete a computerised cognitive assessment and clinical scales between 2 years and 3 years after hospital admission. Participants completed eight cognitive tasks, covering eight cognitive domains, from the Cognitron battery, in addition to the 9-item Patient Health Questionnaire for depression, the Generalised Anxiety Disorder 7-item scale, the Functional Assessment of Chronic Illness Therapy Fatigue Scale, and the 20-item Cognitive Change Index (CCI-20) questionnaire to assess subjective cognitive decline. We evaluated how the absolute risks of symptoms evolved between follow-ups at 6 months, 12 months, and 2–3 years, and whether symptoms at 2–3 years were predicted by earlier aspects of COVID-19 illness. Participants completed an occupation change questionnaire to establish whether their occupation or working status had changed and, if so, why. We assessed which symptoms at 2–3 years were associated with occupation change. People with lived experience were involved in the study. Findings: 2469 PHOSP-COVID participants were invited to participate in the C-Fog study, and 475 participants (191 [40·2%] females and 284 [59·8%] males; mean age 58·26 [SD 11·13] years) who were discharged from one of 83 hospitals provided data at the 2–3-year follow-up. Participants had worse cognitive scores than would be expected on the basis of their sociodemographic characteristics across all cognitive domains tested (average score 0·71 SD below the mean [IQR 0·16–1·04]; p<0·0001). Most participants reported at least mild depression (263 [74·5%] of 353), anxiety (189 [53·5%] of 353), fatigue (220 [62·3%] of 353), or subjective cognitive decline (184 [52·1%] of 353), and more than a fifth reported severe depression (79 [22·4%] of 353), fatigue (87 [24·6%] of 353), or subjective cognitive decline (88 [24·9%] of 353). Depression, anxiety, and fatigue were worse at 2–3 years than at 6 months or 12 months, with evidence of both worsening of existing symptoms and emergence of new symptoms. Symptoms at 2–3 years were not predicted by the severity of acute COVID-19 illness, but were strongly predicted by the degree of recovery at 6 months (explaining 35·0–48·8% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); by a biocognitive profile linking acutely raised D-dimer relative to C-reactive protein with subjective cognitive deficits at 6 months (explaining 7·0–17·2% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); and by anxiety, depression, fatigue, and subjective cognitive deficit at 6 months. Objective cognitive deficits at 2–3 years were not predicted by any of the factors tested, except for cognitive deficits at 6 months, explaining 10·6% of their variance. 95 of 353 participants (26·9% [95% CI 22·6–31·8]) reported occupational change, with poor health being the most common reason for this change. Occupation change was strongly and specifically associated with objective cognitive deficits (odds ratio [OR] 1·51 [95% CI 1·04–2·22] for every SD decrease in overall cognitive score) and subjective cognitive decline (OR 1·54 [1·21–1·98] for every point increase in CCI-20). Interpretation: Psychiatric and cognitive symptoms appear to increase over the first 2–3 years post-hospitalisation due to both worsening of symptoms already present at 6 months and emergence of new symptoms. New symptoms occur mostly in people with other symptoms already present at 6 months. Early identification and management of symptoms might therefore be an effective strategy to prevent later onset of a complex syndrome. Occupation change is common and associated mainly with objective and subjective cognitive deficits. Interventions to promote cognitive recovery or to prevent cognitive decline are therefore needed to limit the functional and economic impacts of COVID-19. Funding: National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Wolfson Foundation, MQ Mental Health Research, MRC-UK Research and Innovation, and National Institute for Health and Care Research.</p
    corecore