453 research outputs found

    Plagioclase Growth Rates Control Three-grain Junction Geometry in Dolerites and Gabbros

    Get PDF
    Measurements of dihedral angles at three-grain junctions in gabbros, involving two grains of plagioclase and one grain of another mineral, demonstrate that the median dihedral angle is generally the same for all minerals in any sample. The few exceptions to this can be attributed to reaction or to the cessation of growth of plagioclase during the last stages of solidification of highly evolved liquids that do not crystallize volumetrically important amounts of plagioclase. The dihedral angle is therefore primarily controlled by the growth behavior of plagioclase in the last remaining liquid. The final value of the dihedral angle is controlled by the extent to which plagioclase growth is accommodated on the (010) faces: low angles form when growth on the (010) faces is minor compared with that on the other growth faces, and high angles form when the (010) faces accommodate significant growth. The response of dihedral angles to changes in crystallization time is therefore explained by the changing response of plagioclase growth to cooling rate, with limited growth on (010) faces during rapid cooling (leading to a low dihedral angle) and more significant growth at slow cooling (leading to high dihedral angle). The correspondence between dihedral angle and plagioclase grain shape (as quantified by the average apparent aspect ratio observed in thin section) is clearly evident for non-fractionated bodies such as dolerite sills. Although the stratigraphic variation of the overall plagioclase grain shape in the floor cumulates of the Skaergaard Intrusion is broadly similar to that observed in sills, there is no correspondence to observed augite�plagioclase�plagioclase dihedral angles, which show a step-wise stratigraphic variation, corresponding to changes in the liquidus assemblage. This decoupling occurs because plagioclase growth in layered intrusions occurs in two stages, the first at, or close to, the magma�mush interface and the second within the mush. Chemical maps of samples on either side of the augite-in dihedral angle step demonstrate a step-wise change in the aspect ratio of the plagioclase grown during the second stage, with the aspect ratio of this stage corresponding to that predicted from the dihedral angles. Plagioclase shape in layered intrusions thus records two separate thermal regimes, with the overall shape controlled by the global cooling rate of the intrusion, and the second (minor) stage within the mushy layer reflecting local thermal buffering controlled by the liquidus assemblage of the bulk magma. Dihedral angles in layered intrusions record the second thermal regime

    The thickness of the crystal mush on the floor of the Bushveld magma chamber.

    Get PDF
    The thickness of the crystal mush on magma chamber floors can be constrained using the offset between the step-change in the median value of dihedral angles formed at the junctions between two grains of plagioclase and a grain of another phase (typically clinopyroxene, but also orthopyroxene and olivine) and the first appearance or disappearance of the liquidus phase associated with the step-change in median dihedral angle. We determined the mush thickness in the Rustenburg Layered Suite of the Bushveld Complex at clinopyroxene-in (in Lower Main Zone) and magnetite-in (in Upper Zone). We also examined an intermittent appearance of cumulus apatite in Upper Zone, using both the appearance and disappearance of cumulus apatite. In all cases, the mush thickness does not exceed 4 m. These values are consistent with field observations of a mechanically rigid mush at the bases of both magnetitite and chromitite layers overlying anorthosite. Mush thickness of the order of a few metres suggests that neither gravitationally-driven compaction nor compositional convection within the mush layer is likely to have been important processes during solidification: adcumulates in the Bushveld are most likely to have formed at the top of the mush during primary crystallisation. Similarly, it is unlikely either that migration of reactive liquids occurs through large stretches of stratigraphy, or that layering is formed by mechanisms other than primary accumulation

    Enhanced performance of 3D electroactive polymer transducers via hierarchical structures

    Get PDF
    Conjugated polymers (CPs) are a class of polymers that exhibit a change in size or shape in response to electrical stimuli. The unique combination of electrical and mechanical properties facilitates the fabrication of novel devices in a broad range of applications including: sensors, actuators, and lab-on-a-chip systems. The alternating single and double bonds along the polymer chain of CPs enables their electroactive properties but is also responsible for processability associated with CPs that has limited fabrication methods. Recently a photosensitive CP composite enabling additive manufacturing (AM) of 3D CP structures was developed. However, the introduction of a copolymer for mechanical stability resulted in a commensurate loss in electroactive performance, and this loss needs to be addressed to unlock to potential of 3D CP devices. This work has identified two main themes for the advancement of 3D CP devices. First, improvement of AM approaches for 3D CP devices is conducted through the development of extrusion-based direct ink writing (DIW) of passive support structures as well as the further development of existing photosensitive CP resin formulations for use in vat polymerization of 3D CP-composite structures. Secondly, the improvement of electroactive performance of 3D CP-composite devices is explored through methods to increase surface area and reduce diffusion path lengths by the deposition of hierarchical CP structures. Development of a DIW process leveraging a support gel improved resolution and quality of 3D polydimethylsiloxane (PDMS) structures enabling the fabrication of 3D CP bilayer devices. The DIW process has also been paired with the development of a PDMS-carbon nanotube composite to produce 3D tubular strain sensors for applications in fluidic networks. The electrical conductivity of CP photosensitive resin formulations has been improved through the integration of polypyrrole (PPy) functionalized carbon nanotubes. This improvement to the material properties enabled the development of a soft-template polymerization process to deposit hierarchical PPy structures on vat polymerized CP composite films. Films with hierarchical PPy features demonstrated improved electroactive performance compared to those deposited with conventional 2D PPy films. Development of these fabrication methods and improved material properties further advances the potential of 3D CP devices and bridges the gap between the micro- and nanoscales towards controllable nanoscale CP features

    Crystal settling and convection in the Shiant Isles Main Sill

    Get PDF
    The 168 m-thick Shiant Isles Main Sill is a composite body, dominated by an early, 24 m-thick, picrite sill formed by the intrusion of a highly olivine-phyric magma, and a later 135 m-thick intrusion of olivine-phyric magma that split the earlier picrite into a 22 m-thick lower part and a 2 m-thick upper part, forming the picrodolerite/crinanite unit (PCU). The high crystal load in the early picrite prevented effective settling of the olivine crystals, which retain their initial stratigraphic distribution. In contrast, the position of the most evolved rocks of the PCU at a level ~80% of its total height point to significant accumulation of crystals on the floor, as evident by the high olivine mode at the base of the PCU. Crystal accumulation on the PCU floor occurred in two stages. During the first, most of the crystal load settled to the floor to form a modally and size-sorted accumulation dominated by olivine, leaving only the very smallest olivine grains still in suspension. The second stage is recorded by the coarsening-upwards of individual olivine grains in the picrodolerite, and their amalgamation into clusters which become both larger and better sintered with increasing stratigraphic height. Large clusters of olivine are present at the roof, forming a foreshortened mirror image of the coarsening-upwards component of the floor accumulation. The coarsening-upwards sequence records the growth of olivine crystals while in suspension in a convecting magma, and their aggregation into clusters, followed by settling over a prolonged period (with limited trapping at the roof). As olivine was progressively lost from the convecting magma, crystal accumulation on the (contemporaneous) floor of the PCU was increasingly dominated by plagioclase, most likely forming clusters and aggregates with augite and olivine, both of which form large poikilitic grains in the crinanite. While the PCU is unusual in being underlain by an earlier, still hot, intrusion that would have enhanced any driving force for convection, we conclude from comparison with microstructures in other sills that convection is likely in tabular bodies >100 m thickness

    Microstructural evolution of silicate immiscible liquids in ferrobasalts

    Get PDF
    Abstract: An experimental study of the microstructural evolution of an immiscible basaltic emulsion shows that the Fe-rich liquid forms homogeneously nucleated droplets dispersed in a continuous Si-rich liquid, together with droplets heterogeneously nucleated on plagioclase, magnetite, and pyroxene. Heterogeneous nucleation is likely promoted by localised compositional heterogeneities around growing crystals. The wetting angle of Fe-rich droplets on both plagioclase and magnetite increases with decreasing temperature. Droplet coarsening occurs by a combination of diffusion-controlled growth and Ostwald ripening, with an insignificant contribution from coalescence. Characteristic microstructures resulting from the interaction of immiscible Fe-rich liquid with crystal grains during crystal growth can potentially be used as an indicator of liquid unmixing in fully crystallised natural samples. In magma bodies < ~ 10 m in size, gravitationally driven segregation of immiscible Fe-rich droplets is unlikely to be significant
    corecore