2,382 research outputs found
Studying the Lunar-Solar Wind Interaction with the SARA Experiment aboard the Indian Lunar Mission Chandrayaan-1
The first Indian lunar mission Chandrayaan-1 was launched on 22 October 2008.
The Sub-keV Atom Reflecting Analyzer (SARA) instrument onboard Chandrayaan-1
consists of an energetic neutral atom (ENA) imaging mass analyzer called CENA
(Chandrayaan-1 Energetic Neutrals Analyzer), and an ion-mass analyzer called
SWIM (Solar wind Monitor). CENA performed the first ever experiment to study
the solar wind-planetary surface interaction via detection of sputtered neutral
atoms and neutralized backscattered solar wind protons in the energy range
~0.01-3.0 keV. SWIM measures solar wind ions, magnetosheath and magnetotail
ions, as well as ions scattered from lunar surface in the ~0.01-15 keV energy
range. The neutral atom sensor uses conversion of the incoming neutrals to
positive ions, which are then analyzed via surface interaction technique. The
ion mass analyzer is based on similar principle. This paper presents the SARA
instrument and the first results obtained by the SWIM and CENA sensors. SARA
observations suggest that about 20% of the incident solar wind protons are
backscattered as neutral hydrogen and ~1% as protons from the lunar surface.
These findings have important implications for other airless bodies in the
solar system.Comment: 4 pages, 6 figure
Corporate Hierarchies and the Size of Nations: Theory and Evidence
Corporate organization varies within a country and across countries with country size. The paper starts by establishing some facts about corporate organization based on unique data of 660 Austrian and German corporations. The larger country (Germany) has larger firms with flatter more decentral corporate hierarchies compared to the smaller country (Austria). Firms in the larger country change their organization less fast than firms in the smaller country. Over time firms have been introducing less hierarchical organizations by delegating power to lower levels of the corporation. We develop a theory which explains these facts and which links these features to the trade environment that countries and firms face. We introduce firms with internal hierarchies in a Krugman (1980) model of trade. We show that international trade and the toughness of competition in international markets induce a power struggle in firms which eventually leads to decentralized corporate hierarchies. We offer econometric evidence which is consistent with the models predictions
JLab Measurement of the He Charge Form Factor at Large Momentum Transfers
The charge form factor of ^4He has been extracted in the range 29 fm
fm from elastic electron scattering, detecting He
nuclei and electrons in coincidence with the High Resolution Spectrometers of
the Hall A Facility of Jefferson Lab. The results are in qualitative agreement
with realistic meson-nucleon theoretical calculations. The data have uncovered
a second diffraction minimum, which was predicted in the range of this
experiment, and rule out conclusively long-standing predictions of dimensional
scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure
The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV
We present final results on the photon electroproduction
() cross section in the deeply virtual Compton
scattering (DVCS) regime and the valence quark region from Jefferson Lab
experiment E00-110. Results from an analysis of a subset of these data were
published before, but the analysis has been improved which is described here at
length, together with details on the experimental setup. Furthermore,
additional data have been analyzed resulting in photon electroproduction cross
sections at new kinematic settings, for a total of 588 experimental bins.
Results of the - and -dependences of both the helicity-dependent and
helicity-independent cross sections are discussed. The -dependence
illustrates the dominance of the twist-2 handbag amplitude in the kinematics of
the experiment, as previously noted. Thanks to the excellent accuracy of this
high luminosity experiment, it becomes clear that the unpolarized cross section
shows a significant deviation from the Bethe-Heitler process in our kinematics,
compatible with a large contribution from the leading twist-2 DVCS term to
the photon electroproduction cross section. The necessity to include
higher-twist corrections in order to fully reproduce the shape of the data is
also discussed. The DVCS cross sections in this paper represent the final set
of experimental results from E00-110, superseding the previous publication.Comment: 48 pages, 32 figure
Low Q^2 measurements of the proton form factor ratio
We present an updated extraction of the proton electromagnetic form factor
ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial
distribution of the proton, and precise measurements can be used to constrain
models of the proton. An improved selection of the elastic events and reduced
background contributions yielded a small systematic reduction in the ratio mu_p
G_E/G_M compared to the original analysis.Comment: 12 pages, 5 figures, archival paper for proton form factor extraction
from Jefferson Lab "LEDEX" experimen
Deeply Virtual Compton Scattering off the neutron
The present experiment exploits the interference between the Deeply Virtual
Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the
imaginary part of DVCS amplitudes on the neutron and on the deuteron from the
helicity-dependent D cross section measured at =1.9
GeV and =0.36. We extract a linear combination of generalized parton
distributions (GPDs) particularly sensitive to , the least constrained
GPD. A model dependent constraint on the contribution of the up and down quarks
to the nucleon spin is deduced.Comment: Published in Phys. Rev. Let
A Search for Sigma^0_5, N^0_5 and Theta^++ Pentaquark States
A high-resolution (sigma_instr. = 1.5 MeV) search for narrow states (Gamma <
10 MeV) with masses of M_x approx 1500-1850 MeV in ep -> e'K^+ X, e'K^- X and
e' pi^+ X electroproduction at small angles and low Q^2 was performed. These
states would be candidate partner states of the reported Theta^+(1540)
pentaquark. No statistically significant signal was observed in any of the
channels at 90% C.L. Upper limits on forward production were determined to be
between 0.7% and 4.2% of the Lambda(1520) production cross section, depending
on the channel and the assumed mass and width of the state.Comment: 5 pages, 5 figures, to appear in Phys. Rev. C, update with responses
to referee suggestion
Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering
We present the first measurements of the \vec{e}p->epg cross section in the
deeply virtual Compton scattering (DVCS) regime and the valence quark region.
The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross
section indicates the twist-2 dominance of DVCS, proving that generalized
parton distributions (GPDs) are accessible to experiment at moderate Q^2. The
helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We
present the first model-independent measurement of linear combinations of GPDs
and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication.
References added. One figure remove
Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values
The five-fold differential cross section for the 12C(e,e'p)11B reaction was
determined over a missing momentum range of 200-400 MeV/c, in a kinematics
regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results
and theoretical models and previous lower missing momentum data is shown. The
theoretical calculations agree well with the data up to a missing momentum
value of 325 MeV/c and then diverge for larger missing momenta. The extracted
distorted momentum distribution is shown to be consistent with previous data
and extends the range of available data up to 400 MeV/c.Comment: 12 pages, 1 table and 3 figures for submission to Journal Physics
- âŠ