902 research outputs found
Protection of steel in concrete using galvanic and hybrid electrochemical treatments
In this study, data from galvanic and hybrid electrochemical treatments applied to structures is
analysed. It is shown that the protection of steel in concrete using galvanic anodes finds theoretical support
from a basis of improving the environment or maintaining a benign environment at the steel. Protection current
output responds to the aggressive nature of the environment and, as a result, galvanic anodes have substantially
longer lives than originally predicted. Monitoring is preferably focused on monitoring the effect of
the protection on the condition of the structure and may be achieved by monitoring either steel corrosion rate
and/or steel corrosion potential. Monitoring is preferably combined with a risk management option such as a
facility to apply a temporary impressed current treatment to arrest active corrosion if a risk is identified. An
allowance for new galvanic protection criteria has been made in the latest European standard on Cathodic
Protection of Steel in Concrete
Monitoring the passivity of steel subject to galvanic protection
This work investigates the assessment of the passivity of steel in concrete subject to galvanic protection. Under atmospherically exposed conditions the kinetics of the cathodic reaction often exhibit activation controlled behaviour. It is shown that in these conditions the corrosion rates estimated from a large negative potential shift are very similar to those determined using the more widely accepted polarisation resistance method. The results are considered in the light of the potential decay cathodic protection criterion, and show how criteria based on potential shift may be improved to monitor steel passivity induced in a galvanic cathodic protection system. This provides the basis for an improved reinforced concrete acceptance criterion that is focussed on the condition of the structure and is included within the ISO standard cathodic protection when applied to galvanic systems
Improving estimations of life history parameters of small animals in mesocosm experiments: a case study on mosquitoes
Mesocosm experiments enable researchers to study animal dynamics, but determining accurate estimates of survival and development rates of different life stages can be difficult, especially as the subjects may be hard to sample and mortality rates can be high. We propose a new methodology for estimating such parameters.We used an experimental set-up with 48 aquatic mesocosms, each with 20 first instar mosquito larvae and under 1 of 12 treatments with varying temperatures and nutrient concentrations. We took daily subsamples of the aquatic life stages as well as counting the emerging adults. We developed a method to estimate the survival and development probabilities at each life stage, based on optimising a matrix population model. We used two different approaches, one assuming the difference between predictions and observations was normally distributed, and the other using a combination of a normal and a multinomial distribution. For each approach, the resulting optimisation problem had around 100 parameters, making conventional gradient descent ineffective with our limited number of data points. We solved this by computing the formal derivatives of our matrix model.Both approaches proved effective in predicting mosquito populations over time, also when compared against a separate validation dataset, and the two approaches produced similar results. They also both predicted similar trends in the survival and development probabilities for each life stage, although there were some differences in the actual values. The approach which only used the normal distribution was considerably more computationally efficient than the mixed distribution approach.This is an effective approach for determining the survival and development rates of small animals in mesocosm experiments. We have not found any other reliable methodology for estimating these parameters, especially not from incomplete data or when there are many different experimental treatments. This methodology enables researchers to gain a much more detailed understanding of the life cycles of small animals, potentially leading to advances in a wide range of areas, for example in mosquito-borne disease risk or in considering the effects of biodiversity loss or climate change on different species.NWONWA.1160.1S.210Number theory, Algebra and Geometr
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.
Spatial representation of temporal information through spike timing dependent plasticity
We suggest a mechanism based on spike time dependent plasticity (STDP) of
synapses to store, retrieve and predict temporal sequences. The mechanism is
demonstrated in a model system of simplified integrate-and-fire type neurons
densely connected by STDP synapses. All synapses are modified according to the
so-called normal STDP rule observed in various real biological synapses. After
conditioning through repeated input of a limited number of of temporal
sequences the system is able to complete the temporal sequence upon receiving
the input of a fraction of them. This is an example of effective unsupervised
learning in an biologically realistic system. We investigate the dependence of
learning success on entrainment time, system size and presence of noise.
Possible applications include learning of motor sequences, recognition and
prediction of temporal sensory information in the visual as well as the
auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio
Impact of Patching and Atropine Treatment on the Child and Family in the Amblyopia Treatment Study
Objective To assess the psychosocial impact on the child and family of patching and atropine as treatments for moderate amblyopia in children younger than 7 years. Methods In a randomized, controlled clinical trial, 419 children younger than 7 years with amblyopic eye visual acuity in the range of 20/40 to 20/100 were assigned to receive treatment with either patching or atropine at 47 clinical sites. After 5 weeks of treatment, a parental quality-of-life questionnaire was completed for 364 (87%) of the 419 patients. Main Outcome Measure Overall and subscale scores on the Amblyopia Treatment Index. Results High internal validity and reliability were demonstrated for the Amblyopia Treatment Index questionnaire. The overall Amblyopia Treatment Index scores and the 3 subscale scores were consistently higher (worse) in the patching group compared with the atropine-treated group (overall mean, 2.52 vs 2.02, P<.001; adverse effects of treatment: mean, 2.35 vs 2.11, P = .002; difficulty with compliance: mean, 2.46 vs 1.99, P<.001; and social stigma: mean, 3.09 vs 1.84, P<.001, respectively). Conclusion Although the Amblyopia Treatment Index questionnaire results indicated that both atropine and patching treatments were well tolerated by the child and family, atropine received more favorable scores overall and on all 3 questionnaire subscales
Responsive behaviour of galvanic anodes in concrete and the basis for its utilisation
This article was published in the journal, Corrosion Science [© Elsevier]. The definitive version is available at: http://www.sciencedirect.com/science/article/pii/S0010938X11003441In this study, a unique concrete specimen was used to analyse the response of embedded sacrificial zinc and steel anodes to rainfall and fluctuations in temperature. Current from the zinc and steel anodes increased when the environment was aggressive, showing that the required protection current depends on the present level of corrosion risk. A basis for using the ‘responsive behaviour’ of galvanic anodes is provided by the protective effects of pit re-alkalisation and pH maintenance. By contrast, protection based on achieving adequate polarisation inhibits the use of responsive behaviour and galvanic anodes might only deliver adequate polarisation in aggressive environments
Prevalence of drug-resistant minority variants in untreated HIV-1-infected individuals with and those without transmitted drug resistance detected by sanger sequencing
Minority variant human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations are associated with an increased risk of virological failure during treatment with NNRTI-containing regimens. To determine whether individuals to whom variants with isolated NNRTI-associated drug resistance were transmitted are at increased risk of virological failure during treatment with a non-NNRTI-containing regimen, we identified minority variant resistance mutations in 33 individuals with isolated NNRTI-associated transmitted drug resistance and 49 matched controls. We found similar proportions of overall and nucleoside reverse transcriptase inhibitor-associated minority variant resistance mutations in both groups, suggesting that isolated NNRTI-associated transmitted drug resistance may not be a risk factor for virological failure during treatment with a non-NNRTI-containing regimen. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
- …