15,479 research outputs found
Aeorodynamic characteristics of an air-exchanger system for the 40- by 80-foot wind tunnel at Ames Research Center
A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented
Resonance Zones and Lobe Volumes for Volume-Preserving Maps
We study exact, volume-preserving diffeomorphisms that have heteroclinic
connections between a pair of normally hyperbolic invariant manifolds. We
develop a general theory of lobes, showing that the lobe volume is given by an
integral of a generating form over the primary intersection, a subset of the
heteroclinic orbits. Our definition reproduces the classical action formula in
the planar, twist map case. For perturbations from a heteroclinic connection,
the lobe volume is shown to reduce, to lowest order, to a suitable integral of
a Melnikov function.Comment: ams laTeX, 8 figure
Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps
We develop a Melnikov method for volume-preserving maps with codimension one
invariant manifolds. The Melnikov function is shown to be related to the flux
of the perturbation through the unperturbed invariant surface. As an example,
we compute the Melnikov function for a perturbation of a three-dimensional map
that has a heteroclinic connection between a pair of invariant circles. The
intersection curves of the manifolds are shown to undergo bifurcations in
homologyComment: LaTex with 10 eps figure
Filling minimality of Finslerian 2-discs
We prove that every Riemannian metric on the 2-disc such that all its
geodesics are minimal, is a minimal filling of its boundary (within the class
of fillings homeomorphic to the disc). This improves an earlier result of the
author by removing the assumption that the boundary is convex. More generally,
we prove this result for Finsler metrics with area defined as the
two-dimensional Holmes-Thompson volume. This implies a generalization of Pu's
isosystolic inequality to Finsler metrics, both for Holmes-Thompson and
Busemann definitions of Finsler area.Comment: 16 pages, v2: improved introduction and formattin
Spin Polarizations at and about the Lowest Filled Landau Level
The spin polarization versus temperature at or near a fully filled lowest
Landau level is explored for finite-size systems in a periodic rectangular
geometry. Our results at which also include the finite-thickness
correction are in good agreement with the experimental results. We also find
that the interacting electron system results are in complete agreement with the
results of the sigma model, i.e., skyrmions on a torus have a topological
charge of and the Q=1 solution is like a single spin-flip excitation.
Our results therefore provide direct evidence for the skyrmionic nature of the
excitations at this filling factor.Comment: 4 pages, REVTEX, and 4 .ps files, To be published in Europhysics
Letter
Identification of Novel Astroviruses in the Gastrointestinal Tract of Domestic Cats
Astroviruses, isolated from numerous avian and mammalian species including humans, are commonly associated with enteritis and encephalitis. Two astroviruses have previously been identified in cats, and while definitive evidence is lacking, an association with enteritis is suggested. Using metagenomic next-generation sequencing of viral nucleic acids from faecal samples, we identified two novel feline astroviruses termed Feline astrovirus 3 and 4. These viruses were isolated from healthy shelter-housed kittens (Feline astrovirus 3; 6448 bp) and from a kitten with diarrhoea that was co-infected with Feline parvovirus (Feline astrovirus 4, 6549 bp). Both novel astroviruses shared a genome arrangement of three open reading frames (ORFs) comparable to that of other astroviruses. Phylogenetic analysis of the concatenated ORFs, ORF1a, ORF1b and capsid protein revealed that both viruses were phylogenetically distinct from other feline astroviruses, although their precise evolutionary history could not be accurately determined due to a lack of resolution at key nodes. Large-scale molecular surveillance studies of healthy and diseased cats are needed to determine the pathogenicity of feline astroviruses as single virus infections or in co-infections with other enteric viruses
Virological sampling of inaccessible wildlife with drones
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. There is growing interest in characterizing the viromes of diverse mammalian species, particularly in the context of disease emergence. However, little is known about virome diversity in aquatic mammals, in part due to difficulties in sampling. We characterized the virome of the exhaled breath (or blow) of the Eastern Australian humpback whale (Megaptera novaeangliae). To achieve an unbiased survey of virome diversity, a meta-transcriptomic analysis was performed on 19 pooled whale blow samples collected via a purpose-built Unmanned Aerial Vehicle (UAV, or drone) approximately 3 km off the coast of Sydney, Australia during the 2017 winter annual northward migration from Antarctica to northern Australia. To our knowledge, this is the first time that UAVs have been used to sample viruses. Despite the relatively small number of animals surveyed in this initial study, we identified six novel virus species from five viral families. This work demonstrates the potential of UAVs in studies of virus disease, diversity, and evolution
Spider Optimization: Probing the Systematics of a Large Scale B-Mode Experiment
Spider is a long-duration, balloon-borne polarimeter designed to measure
large scale Cosmic Microwave Background (CMB) polarization with very high
sensitivity and control of systematics. The instrument will map over half the
sky with degree angular resolution in I, Q and U Stokes parameters, in four
frequency bands from 96 to 275 GHz. Spider's ultimate goal is to detect the
primordial gravity wave signal imprinted on the CMB B-mode polarization. One of
the challenges in achieving this goal is the minimization of the contamination
of B-modes by systematic effects. This paper explores a number of instrument
systematics and observing strategies in order to optimize B-mode sensitivity.
This is done by injecting realistic-amplitude, time-varying systematics in a
set of simulated time-streams. Tests of the impact of detector noise
characteristics, pointing jitter, payload pendulations, polarization angle
offsets, beam systematics and receiver gain drifts are shown. Spider's default
observing strategy is to spin continuously in azimuth, with polarization
modulation achieved by either a rapidly spinning half-wave plate or a rapidly
spinning gondola and a slowly stepped half-wave plate. Although the latter is
more susceptible to systematics, results shown here indicate that either mode
of operation can be used by Spider.Comment: 15 pages, 12 figs, version with full resolution figs available here
http://www.astro.caltech.edu/~lgg/spider_front.ht
Investigating the impact of poverty on colonization and infection with drug-resistant organisms in humans: A systematic review
Availability of data and materials: All data generated or analysed during this study are included in this published article.Copyright © The Author(s). 2018. Background: Poverty increases the risk of contracting infectious diseases and therefore exposure to antibiotics. Yet there is lacking evidence on the relationship between income and non-income dimensions of poverty and antimicrobial resistance. Investigating such relationship would strengthen antimicrobial stewardship interventions. Methods: A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Ovid, MEDLINE, EMBASE, Scopus, CINAHL, PsychINFO, EBSCO, HMIC, and Web of Science databases were searched in October 2016. Prospective and retrospective studies reporting on income or non-income dimensions of poverty and their influence on colonisation or infection with antimicrobial-resistant organisms were retrieved. Study quality was assessed with the Integrated quality criteria for review of multiple study designs (ICROMS) tool. Results: Nineteen articles were reviewed. Crowding and homelessness were associated with antimicrobial resistance in community and hospital patients. In high-income countries, low income was associated with Streptococcus pneumoniae and Acinetobacter baumannii resistance and a seven-fold higher infection rate. In low-income countries the findings on this relation were contradictory. Lack of education was linked to resistant S. pneumoniae and Escherichia coli. Two papers explored the relation between water and sanitation and antimicrobial resistance in low-income settings. Conclusions: Despite methodological limitations, the results suggest that addressing social determinants of poverty worldwide remains a crucial yet neglected step towards preventing antimicrobial resistance.This work was supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) [grant No. HPRU-2012-10047] in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London in partnership with Public Health England (PHE). ECS has received a Wellcome Trust ISFF Faculty postdoctoral fellowship, an Early Career Research Fellowship from the Antimicrobial Research Collaborative at Imperial College London, and acknowledges the support of the Florence Nightingale Foundation. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. The funder of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication
Topological Analysis of Metabolic Networks Integrating Co-Segregating Transcriptomes and Metabolomes in Type 2 Diabetic Rat Congenic Series
Background: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus is caused by complex organ-specific cellular mechanisms contributing to impaired insulin secretion and insulin resistance. Methods: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualise shortest paths between metabolites and genes significantly associated with each genomic block. Results: Despite strong genomic similarities (95-99%) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific metabotypes (mQTL) and genome-wide expression traits (eQTL). Variation in key metabolites like glucose, succinate, lactate or 3-hydroxybutyrate, and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing shortest path length drove prioritization of biological validations by gene silencing. Conclusions: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulations and to characterize novel functional roles for genes determining tissue-specific metabolism
- …