34,266 research outputs found
Oceanic wave measurement system
An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion
Low-dimensional models for turbulent plane Couette flow in a minimal flow unit
We model turbulent plane Couette flow in the minimal flow unit (MFU) – a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence – by expanding the velocity field as a sum of optimal modes calculated via proper orthogonal decomposition from numerical data. Ordinary differential equations are obtained by Galerkin projection of the Navier–Stokes equations onto these modes. We first consider a 6-mode (11-dimensional) model and study the effects of including losses to neglected modes. Ignoring these, the model reproduces turbulent statistics acceptably, but fails to reproduce dynamics; including them, we find a stable periodic orbit that captures the regeneration cycle dynamics and agrees well with direct numerical simulations. However, restriction to as few as six modes artificially constrains the relative magnitudes of streamwise vortices and streaks and so cannot reproduce stability of the laminar state or properly account for bifurcations to turbulence as Reynolds number increases. To address this issue, we develop a second class of models based on ‘uncoupled’ eigenfunctions that allow independence among streamwise and cross-stream velocity components. A 9-mode (31-dimensional) model produces bifurcation diagrams for steady and periodic states in qualitative agreement with numerical Navier–Stokes solutions, while preserving the regeneration cycle dynamics. Together, the models provide empirical evidence that the ‘backbone’ for MFU turbulence is a periodic orbit, and support the roll–streak–breakdown–roll reformation picture of shear-driven turbulence
Recommended from our members
A multi-spacecraft reanalysis of the atmosphere of Mars
We have conducted a nine-Mars Year (MY) consistent reanalysis of the martian atmosphere covering the period MY 24–32 and making use of data from three different spacecraft. Remotely-sensed measurements of temperature, dust opacity, water ice and ozone from NASA’s Mars Global Surveyor (MGS) and Mars Recconaisance Orbiter (MRO) and ESA’s Mars Express (MEx) were assimilated [1] into a single model simulation, sampled two-hourly over the whole period. This forms a large, regular reanalysis dataset that is being made publicly available as an output of the EU UPWARDS project. The same analysis technique, with an improved model and higher resolution will be conducted with ESA Trace Gas Orbiter (TGO) data as it becomes available
Recommended from our members
Trace gas assimilation of Mars orbiter observations
Ozone, water vapour and argon are minor constituents in the Martian atmosphere, observations of which can be of use in constraining atmospheric dynamical and physical processes. This is especially true in the winter season of each hemisphere, when the bulk of the main constituent in the atmosphere (CO2 ) condenses in the polar regions shifting the balance of atmospheric composition to a more trace gas rich air mass.
Current Mars Global Circulation Models (MGCMs) are able to represent the photochemistry occuring in the atmosphere, with constraints being imposed by comparisons with observations. However, a long term comparison using data assimilation provides a more robust constraint on the model. We aim to provide a technique for trace gas data assimilation for the analysis of observations from current and future satellite missions (such as ExoMars) which observe the spatial and temporal distribution of trace gases on Mars
Digital command system second-order subcarrier tracking performance
Equations to determine tracking performance for second order, phase locked loop used for subcarrier synchronization on digital command syste
Recommended from our members
Investigating the ozone cycle on Mars using GCM modelling and data assimilation
Recommended from our members
First ozone reanalysis on Mars using SPICAM data
To further our understanding of important photochemical processes in the Martian atmosphere, a synthesis can be used to investigate the temporal and spatial agreement between model and observations and determine any possible causes of identified differences. In this study [1], we have assimilated, for the first time, total ozone into a Mars Global Circulation model (GCM) to study the ozone cycle
Preliminary Centaur Systems Analysis
The Centaur is stored in the Orbiter payload bay on the Centaur Integrated Support System (CISS). The CISS not only cradles the Centaur prior to deployment but also provides any signal conditioning required to make the Centaur/Orbiter hardwire interfaces compatible. In addition, the CISS provides other Centaur functions such as controlling all the avionics safety features and providing all the helium supplies for tank pressurizations. Problems associated with a Centaur design concept using a transponder and two switchable antennas are defined. Solutions to these problems are presented
- …