3,457 research outputs found
Development of optimized, graded-permeability axial groove heat pipes
Heat pipe performance can usually be improved by uniformly varying or grading wick permeability from end to end. A unique and cost effective method for grading the permeability of an axial groove heat pipe is described - selective chemical etching of the pipe casing. This method was developed and demonstrated on a proof-of-concept test article. The process improved the test article's performance by 50 percent. Further improvement is possible through the use of optimally etched grooves
Nonlinear Propagation of Light in One Dimensional Periodic Structures
We consider the nonlinear propagation of light in an optical fiber waveguide
as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is
assumed to have an index of refraction which varies periodically along its
length. The wavelength of light is selected to be in resonance with the
periodic structure (Bragg resonance). The AMLE system considered incorporates
the effects non-instantaneous response of the medium to the electromagnetic
field (chromatic or material dispersion), the periodic structure (photonic band
dispersion) and nonlinearity. We present a detailed discussion of the role of
these effects individually and in concert. We derive the nonlinear coupled mode
equations (NLCME) which govern the envelope of the coupled backward and forward
components of the electromagnetic field. We prove the validity of the NLCME
description and give explicit estimates for the deviation of the approximation
given by NLCME from the {\it exact} dynamics, governed by AMLE. NLCME is known
to have gap soliton states. A consequence of our results is the existence of
very long-lived {\it gap soliton} states of AMLE. We present numerical
simulations which validate as well as illustrate the limits of the theory.
Finally, we verify that the assumptions of our model apply to the parameter
regimes explored in recent physical experiments in which gap solitons were
observed.Comment: To appear in The Journal of Nonlinear Science; 55 pages, 13 figure
Small Aircraft Transportation System Concept and Technologies
This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements
A molecular understanding of alphavirus entry
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle
Concordance Between Electronic Health Record Data and Medicare Part D Claims Data for Oral Anticancer Drug Use
Real-world evidence from electronic health records (EHRs) and claims data are being evaluated for use in regulatory decision-making.1,2 The objective of our study was to determine the concordance between EHR and Medicare Part D (MPD) claims data for the receipt of oral anticancer agents, a rapidly growing treatment option for cancer
Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus.
HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans
Complex disease genetics: present and future translational applications
A report on the British Atherosclerosis Society autumn meeting 'Genetics of Complex Diseases', Cambridge, UK, 17-18 September 2009
A Comparative Study of the ReCell® Device and Autologous Spit-Thickness Meshed Skin Graft in the Treatment of Acute Burn Injuries.
Early excision and autografting are standard care for deeper burns. However, donor sites are a source of significant morbidity. To address this, the ReCell® Autologous Cell Harvesting Device (ReCell) was designed for use at the point-of-care to prepare a noncultured, autologous skin cell suspension (ASCS) capable of epidermal regeneration using minimal donor skin. A prospective study was conducted to evaluate the clinical performance of ReCell vs meshed split-thickness skin grafts (STSG, Control) for the treatment of deep partial-thickness burns. Effectiveness measures were assessed to 1 year for both ASCS and Control treatment sites and donor sites, including the incidence of healing, scarring, and pain. At 4 weeks, 98% of the ASCS-treated sites were healed compared with 100% of the Controls. Pain and assessments of scarring at the treatment sites were reported to be similar between groups. Significant differences were observed between ReCell and Control donor sites. The mean ReCell donor area was approximately 40 times smaller than that of the Control (P < .0001), and after 1 week, significantly more ReCell donor sites were healed than Controls (P = .04). Over the first 16 weeks, patients reported significantly less pain at the ReCell donor sites compared with Controls (P ≤ .05 at each time point). Long-term patients reported higher satisfaction with ReCell donor site outcomes compared with the Controls. This study provides evidence that the treatment of deep partial-thickness burns with ASCS results in comparable healing, with significantly reduced donor site size and pain and improved appearance relative to STSG
Optimization of Drug Prescription and Medication Management in Older Adults with Cardiovascular Disease
Cardiovascular disease increases incrementally with age and elderly patients concomitantly sustain multimorbidities, with resultant prescription of multiple medications. Despite conforming with disease-specific cardiovascular clinical practice guidelines, this polypharmacy predisposes many elderly individuals with cardiovascular disease to adverse drug events and non-adherence. Patient-centered care requires that the clinician explore with each patient his or her goals of care and that this shared decision-making constitutes the basis for optimization of medication management. This approach to aligning therapies with patient preferences is likely to promote patient satisfaction, to limit morbidity, and to favorably affect healthcare costs
- …