1,551 research outputs found

    How Efficient Is The Langacker-Pi Mechanism of Monopole Annihilation?

    Full text link
    We investigate the dynamics of monopole annihilation by the Langacker-Pi mechanism. We find taht considerations of causality, flux-tube energetics and the friction from Aharonov-Bohm scatteering suggest that the monopole annihilation is most efficient if electromagnetism is spontaneously broken at the lowest temperature (Tem106GeVT_{em} \approx 10^6 GeV) consistent with not having the monopoles dominate the energy density of the universe.Comment: 10 page

    Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z=0.716

    Get PDF
    We present deep optical photometry of the afterglow of gamma-ray burst (GRB) 041006 and its associated hypernova obtained over 65 days after detection (55 R-band epochs on 10 different nights). Our early data (t<4 days) joined with published GCN data indicates a steepening decay, approaching F_nu ~t^{-0.6} at early times (<<1 day) and F_nu ~t^{-1.3} at late times. The break at t_b=0.16+-0.04 days is the earliest reported jet break among all GRB afterglows. During our first night, we obtained 39 exposures spanning 2.15 hours from 0.62 to 0.71 days after the burst that reveal a smooth afterglow, with an rms deviation of 0.024 mag from the local power-law fit, consistent with photometric errors. After t~4 days, the decay slows considerably, and the light curve remains approximately flat at R~24 mag for a month before decaying by another magnitude to reach R~25 mag two months after the burst. This ``bump'' is well-fitted by a k-corrected light curve of SN1998bw, but only if stretched by a factor of 1.38 in time. In comparison with the other GRB-related SNe bumps, GRB 041006 stakes out new parameter space for GRB/SNe, with a very bright and significantly stretched late-time SN light curve. Within a small sample of fairly well observed GRB/SN bumps, we see a hint of a possible correlation between their peak luminosity and their ``stretch factor'', broadly similar to the well-studied Phillips relation for the type Ia supernovae.Comment: ApJ Letters, accepted. Additional material available at ftp://cfa-ftp.harvard.edu/pub/kstanek/GRB041006

    Constraints in the Context of Induced-gravity Inflation

    Full text link
    Constraints on the required flatness of the scalar potential V(ϕ)V(\phi) for a cousin-model to extended inflation are studied. It is shown that, unlike earlier results, Induced-gravity Inflation can lead to successful inflation with a very simple lagrangian and λ106\lambda \sim 10^{-6}, rather than 101510^{-15} as previously reported. A second order phase transition further enables this model to escape the \lq big bubble' problem of extended inflation, while retaining the latter's motivations based on the low-energy effective lagrangians of supergravity, superstring, and Kaluza-Klein theories.Comment: 19 pp; 3 figures (not included -- available from author). Plain LaTeX. In press in Physical Review

    The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    Full text link
    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M0.424 \pm 0.017 \text{M}_\odot) and the orbital parameters of the binary about the central star.Comment: Submitted to MNRAS Letters. Additional tables with eclipse times are included here. The Kepler data that was used for the analysis of this system (Q1 through Q6) will be available on MAST after June 27, 201

    High Energy Particles from Monopoles Connected by Strings

    Get PDF
    Monopole-antimonopole pairs connected by strings and monopole-string networks with N>2N>2 strings attached to each monopole can be formed at phase transitions in the early universe. In such hybrid defects, monopoles accelerate under the string tension and can reach ultrarelativistic Lorentz factors, γ1\gamma\gg 1. We study the radiation of gauge quanta by accelerating monopoles. For monopoles with a chromomagnetic charge, we also discuss the high-energy hadron production through emission of virtual gluons and their subsequent fragmentation into hadrons. The relevant parameter for gauge boson radiation is M/aM/a, where MM is the boson mass and aa is the proper acceleration of the monopole. For MaM\ll a, the gauge bosons can be considered as massless and the typical energy of the emitted quanta is EγaE\sim\gamma a. In the opposite limit, MaM\gg a, the radiation power is exponentially suppressed and gauge quanta are emitted with a typical energy EγME\sim\gamma M in a narrow range ΔE/E(a/M)1/2\Delta E/E\sim (a/M)^{1/2}. Cosmological monopole-string networks can produce photons and hadrons of extremely high energies. For a wide range of parameters these energies can be much greater than the Planck scale.Comment: 28 pages, ReVTex, 5 postscript figures. Minor changes, some references added. Submitted to Phys. Rev.

    Management and efficacy of intensified insulin therapy starting in outpatients

    Get PDF
    Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients

    Scalar-Tensor Cosmological Models

    Get PDF
    We analyze the qualitative behaviors of scalar-tensor cosmologies with an arbitrary monotonic ω(Φ)\omega(\Phi) function. In particular, we are interested on scalar-tensor theories distinguishable at early epochs from General Relativity (GR) but leading to predictions compatible with solar-system experiments. After extending the method developed by Lorentz-Petzold and Barrow, we establish the conditions required for convergence towards GR at tt\rightarrow\infty. Then, we obtain all the asymptotic analytical solutions at early times which are possible in the framework of these theories. The subsequent qualitative evolution, from these asymptotic solutions until their later convergence towards GR, has been then analyzed by means of numerical computations. From this analysis, we have been able to establish a classification of the different qualitative behaviors of scalar-tensor cosmological models with an arbitrary monotonic ω(Φ)\omega(\Phi) function.Comment: uuencoded compressed postscript file containing 41 pages, with 9 figures, accepted for publication in Physical Review

    Neutrino oscillations and uncertainty relations

    Full text link
    We show that coherent flavor neutrino states are produced (and detected) due to the momentum-coordinate Heisenberg uncertainty relation. The Mandelstam-Tamm time-energy uncertainty relation requires non-stationary neutrino states for oscillations to happen and determines the time interval (propagation length) which is necessary for that. We compare different approaches to neutrino oscillations which are based on different physical assumptions but lead to the same expression for the neutrino transition probability in standard neutrino oscillation experiments. We show that a Moessbauer neutrino experiment could allow to distinguish different approaches and we present arguments in favor of the 163Ho-163Dy system for such an experiment.Comment: Some small changes in section 2, results unchanged. Added referenc

    General Solutions for Tunneling of Scalar Fields with Quartic Potentials in de Sitter Space

    Full text link
    The tunneling rates for scalar fields with quartic potentials in de Sitter space in the limit of no gravitational back reaction are calculated numerically and the results are fitted by analytic formulae.Comment: (Contours in Figure 1 corrected, two-dimensional fitting coefficient corrected, references added.), 16 pages, KUNS 124

    The Singlet Majoron Model with Hidden Scale Invariance

    Full text link
    We investigate an extension of the Singlet Majoron Model in which the breaking of dilatation symmetry by the mass parameters of the scalar potential is removed by means of a dilaton field. Starting from the one-loop renormalization group improved potential, we discuss the ground state of the theory. The flat direction in the classical potential is lifted by quantum corrections and the true vacua are found. Studying the finite temperature potential, we analyze the cosmological consequences of a Jordan-Brans-Dicke dilaton and show that the lepton number is spontaneously broken after the electroweak phase transition, thus avoiding any constraint coming from the requirement of the preservation of the baryon asymmetry in the early Universe. We also find that, contrary to the Standard Model case, the dilaton cosmology does not impose any upper bound on the scale of the spontaneous breaking of scale invariance.Comment: 22 pages, SISSA-5/93/A and DFPD/93/TH/0
    corecore