2,330 research outputs found

    Inflaton Decay in an Alpha Vacuum

    Full text link
    We study the alpha vacua of de Sitter space by considering the decay rate of the inflaton field coupled to a scalar field placed in an alpha vacuum. We find an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum and, surprisingly, no non-renormalizable divergences. We also consider a modified alpha dependent time ordering prescription for the Feynman propagator and show that it leads to an alpha independent result. This result suggests that it may be possible to calculate in any alpha vacuum if we employ the appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin

    Are Textures Natural?

    Get PDF
    We make the simple observation that, because of global symmetry violating higher-dimension operators expected to be induced by Planck-scale physics, textures are generically much too short-lived to be of use for large-scale structure formation.Comment: 9p

    Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity

    Get PDF
    We study the phase space structure and the quantization of a pointlike particle in 2+1 dimensional gravity. By adding boundary terms to the first order Einstein Hilbert action, and removing all redundant gauge degrees of freedom, we arrive at a reduced action for a gravitating particle in 2+1 dimensions, which is invariant under Lorentz transformations and a group of generalized translations. The momentum space of the particle turns out to be the group manifold SL(2). Its position coordinates have non-vanishing Poisson brackets, resulting in a non-commutative quantum spacetime. We use the representation theory of SL(2) to investigate its structure. We find a discretization of time, and some semi-discrete structure of space. An uncertainty relation forbids a fully localized particle. The quantum dynamics is described by a discretized Klein Gordon equation.Comment: 58 pages, 3 eps figures, presentation of the classical theory improve

    Landau Levels in the noncommutative AdS2AdS_2

    Get PDF
    We formulate the Landau problem in the context of the noncommutative analog of a surface of constant negative curvature, that is AdS2AdS_2 surface, and obtain the spectrum and contrast the same with the Landau levels one finds in the case of the commutative AdS2AdS_2 space.Comment: 19 pages, Latex, references and clarifications added including 2 figure

    The Transit Light Curve Project. VI. Three Transits of the Exoplanet TrES-2

    Get PDF
    Of the nearby transiting exoplanets that are amenable to detailed study, TrES-2 is both the most massive and has the largest impact parameter. We present z-band photometry of three transits of TrES-2. We improve upon the estimates of the planetary, stellar, and orbital parameters, in conjunction with the spectroscopic analysis of the host star by Sozzetti and co-workers. We find the planetary radius to be 1.222 +/- 0.038 R_Jup and the stellar radius to be 1.003 +/- 0.027 R_Sun. The quoted uncertainties include the systematic error due to the uncertainty in the stellar mass (0.980 +/- 0.062 M_Sun). The timings of the transits have an accuracy of 25s and are consistent with a uniform period, thus providing a baseline for future observations with the NASA Kepler satellite, whose field of view will include TrES-2.Comment: 15 pages, including 2 figures, accepted Ap

    The Orbit of WASP-12b Is Decaying

    Get PDF
    WASP-12b is a transiting hot Jupiter on a 1.09 day orbit around a late-F star. Since the planet's discovery in 2008, the time interval between transits has been decreasing by 29 ± 2 ms yr⁻¹. This is a possible sign of orbital decay, although the previously available data left open the possibility that the planet's orbit is slightly eccentric and is undergoing apsidal precession. Here, we present new transit and occultation observations that provide more decisive evidence for orbital decay, which is favored over apsidal precession by a ΔBIC of 22.3 or Bayes factor of 70,000. We also present new radial-velocity data that rule out the Rømer effect as the cause of the period change. This makes WASP-12 the first planetary system for which we can be confident that the orbit is decaying. The decay timescale for the orbit is P/P˙=3.25±0.23. Interpreting the decay as the result of tidal dissipation, the modified stellar tidal quality factor is Q′⋆=1.8×10⁵

    Examples of Embedded Defects (in Particle Physics and Condensed Matter)

    Get PDF
    We present a series of examples designed to clarify the formalism of the companion paper `Embedded Vortices'. After summarising this formalism in a prescriptive sense, we run through several examples: firstly, deriving the embedded defect spectrum for Weinberg-Salam theory, then discussing several examples designed to illustrate facets of the formalism. We then calculate the embedded defect spectrum for three physical Grand Unified Theories and conclude with a discussion of vortices formed in the superfluid 3^3He-A phase transition.Comment: final corrections. latex fil

    Renormalization of initial conditions and the trans-Planckian problem of inflation

    Get PDF
    Understanding how a field theory propagates the information contained in a given initial state is essential for quantifying the sensitivity of the cosmic microwave background to physics above the Hubble scale during inflation. Here we examine the renormalization of a scalar theory with nontrivial initial conditions in the simpler setting of flat space. The renormalization of the bulk theory proceeds exactly as for the standard vacuum state. However, the short distance features of the initial conditions can introduce new divergences which are confined to the surface on which the initial conditions are imposed. We show how the addition of boundary counterterms removes these divergences and induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe

    A New Spectroscopic and Photometric Analysis of the Transiting Planet Systems TrES-3 and TrES-4

    Get PDF
    We report new spectroscopic and photometric observations of the parent stars of the recently discovered transiting planets TrES-3 and TrES-4. A detailed abundance analysis based on high-resolution spectra yields [Fe/H] =0.19±0.08= -0.19\pm 0.08, Teff=5650±75T_\mathrm{eff} = 5650\pm 75 K, and logg=4.4±0.1\log g = 4.4\pm 0.1 for TrES-3, and [Fe/H] =+0.14±0.09= +0.14\pm 0.09, Teff=6200±75T_\mathrm{eff} = 6200\pm 75 K, and logg=4.0±0.1\log g = 4.0\pm0.1 for TrES-4. The accuracy of the effective temperatures is supported by a number of independent consistency checks. The spectroscopic orbital solution for TrES-3 is improved with our new radial-velocity measurements of that system, as are the light-curve parameters for both systems based on newly acquired photometry for TrES-3 and a reanalysis of existing photometry for TrES-4. We have redetermined the stellar parameters taking advantage of the strong constraint provided by the light curves in the form of the normalized separation a/Ra/R_\star (related to the stellar density) in conjunction with our new temperatures and metallicities. The masses and radii we derive are M_\star=0.928_{-0.048}^{+0.028} M_{\sun},R_\star = 0.829_{-0.022}^{+0.015} R_{\sun}, and M_\star = 1.404_{-0.134}^{+0.066} M_{\sun}, R_\star=1.846_{-0.087}^{+0.096} R_{\sun} for TrES-3 and TrES-4, respectively. With these revised stellar parameters we obtain improved values for the planetary masses and radii. We find Mp=1.9100.080+0.075MJupM_p = 1.910_{-0.080}^{+0.075} M_\mathrm{Jup}, Rp=1.3360.036+0.031RJupR_p=1.336_{-0.036}^{+0.031} R_\mathrm{Jup} for TrES-3, and Mp=0.925±0.082MJupM_p=0.925 \pm 0.082 M_\mathrm{Jup}, Rp=1.7830.086+0.093RJupR_p=1.783_{-0.086}^{+0.093} R_\mathrm{Jup} for TrES-4. We confirm TrES-4 as the planet with the largest radius among the currently known transiting hot Jupiters.Comment: 42 pages, 10 tables, 8 figures. Accepted for publication in the Astrophysical Journa

    The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    Full text link
    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M0.424 \pm 0.017 \text{M}_\odot) and the orbital parameters of the binary about the central star.Comment: Submitted to MNRAS Letters. Additional tables with eclipse times are included here. The Kepler data that was used for the analysis of this system (Q1 through Q6) will be available on MAST after June 27, 201
    corecore