7,445 research outputs found

    Two-component {CH} system: Inverse Scattering, Peakons and Geometry

    Full text link
    An inverse scattering transform method corresponding to a Riemann-Hilbert problem is formulated for CH2, the two-component generalization of the Camassa-Holm (CH) equation. As an illustration of the method, the multi - soliton solutions corresponding to the reflectionless potentials are constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment

    Induced activation in accelerator components

    Get PDF
    The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code

    Variational Principles for Lagrangian Averaged Fluid Dynamics

    Full text link
    The Lagrangian average (LA) of the ideal fluid equations preserves their transport structure. This transport structure is responsible for the Kelvin circulation theorem of the LA flow and, hence, for its convection of potential vorticity and its conservation of helicity. Lagrangian averaging also preserves the Euler-Poincar\'e (EP) variational framework that implies the LA fluid equations. This is expressed in the Lagrangian-averaged Euler-Poincar\'e (LAEP) theorem proven here and illustrated for the Lagrangian average Euler (LAE) equations.Comment: 23 pages, 3 figure

    Nanomechanics of a magnetic shuttle device

    Get PDF
    We show that self sustained mechanical vibrations in a model magnetic shuttle device can be driven by both the charge and the spin accumulated on the movable central island of the device. Different scenarios for how spin- and charge-induced shuttle instabilities may develop are discussed and shown to depend on whether there is a Coulomb blockade of tunneling or not. The crucial role of electronic spin flips in a magnetically driven shuttle is established and shown to cause giant magnetoresistance and dynamic magnetostriction effects

    Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide

    Full text link
    The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy (NV) centers in diamond is demonstrated. The electric field penetration into diamond and the loss of the guided mode are measured. The results indicate that the GaP-diamond system could be useful for realizing coupled microcavity-NV devices for quantum information processing in diamond.Comment: 4 pages 4 figure

    An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion

    Full text link
    We study a class of 1+1 quadratically nonlinear water wave equations that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still preserves integrability via the inverse scattering transform (IST) method. This IST-integrable class of equations contains both the KdV equation and the CH equation as limiting cases. It arises as the compatibility condition for a second order isospectral eigenvalue problem and a first order equation for the evolution of its eigenfunctions. This integrable equation is shown to be a shallow water wave equation derived by asymptotic expansion at one order higher approximation than KdV. We compare its traveling wave solutions to KdV solitons.Comment: 4 pages, no figure

    A note on multi-dimensional Camassa-Holm type systems on the torus

    Full text link
    We present a 2n2n-component nonlinear evolutionary PDE which includes the nn-dimensional versions of the Camassa-Holm and the Hunter-Saxton systems as well as their partially averaged variations. Our goal is to apply Arnold's [V.I. Arnold, Sur la g\'eom\'etrie diff\'erentielle des groupes de Lie de dimension infinie et ses applications \`a l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1966) 319-361], [D.G. Ebin and J.E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92(2) (1970) 102-163] geometric formalism to this general equation in order to obtain results on well-posedness, conservation laws or stability of its solutions. Following the line of arguments of the paper [M. Kohlmann, The two-dimensional periodic bb-equation on the diffeomorphism group of the torus. J. Phys. A.: Math. Theor. 44 (2011) 465205 (17 pp.)] we present geometric aspects of a two-dimensional periodic μ\mu-bb-equation on the diffeomorphism group of the torus in this context.Comment: 14 page

    Selective decay by Casimir dissipation in fluids

    Full text link
    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in \cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies

    Integrable discretizations of some cases of the rigid body dynamics

    Full text link
    A heavy top with a fixed point and a rigid body in an ideal fluid are important examples of Hamiltonian systems on a dual to the semidirect product Lie algebra e(n)=so(n)Rne(n)=so(n)\ltimes\mathbb R^n. We give a Lagrangian derivation of the corresponding equations of motion, and introduce discrete time analogs of two integrable cases of these systems: the Lagrange top and the Clebsch case, respectively. The construction of discretizations is based on the discrete time Lagrangian mechanics on Lie groups, accompanied by the discrete time Lagrangian reduction. The resulting explicit maps on e(n)e^*(n) are Poisson with respect to the Lie--Poisson bracket, and are also completely integrable. Lax representations of these maps are also found.Comment: arXiv version is already officia
    corecore