413 research outputs found

    The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration

    Get PDF
    Cell migration requires extension of lamellipodia that are stabilized by formation of adhesive complexes at the leading edge. Both processes are regulated by signaling proteins recruited to nascent adhesive sites that lead to activation of Rho GTPases. The Ajuba/Zyxin family of LIM proteins are components of cellular adhesive complexes. We show that cells from Ajuba null mice are inhibited in their migration, without associated abnormality in adhesion to extracellular matrix proteins, cell spreading, or integrin activation. Lamellipodia production, or function, is defective and there is a selective reduction in the level and tyrosine phosphorylation of FAK, p130Cas, Crk, and Dock180 at nascent focal complexes. In response to migratory cues Rac activation is blunted in Ajuba null cells, as detected biochemically and by FRET analysis. Ajuba associates with the focal adhesion-targeting domain of p130Cas, and rescue experiments suggest that Ajuba acts upstream of p130Cas to localize p130Cas to nascent adhesive sites in migrating cells thereby leading to the activation of Rac

    Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 2 (2017): e00119-17, doi:10.1128/mSystems.00119-17.The pulmonary system is a common site for bacterial infections in cetaceans, but very little is known about their respiratory microbiome. We used a small, unmanned hexacopter to collect exhaled breath condensate (blow) from two geographically distinct populations of apparently healthy humpback whales (Megaptera novaeangliae), sampled in the Massachusetts coastal waters off Cape Cod (n = 17) and coastal waters around Vancouver Island (n = 9). Bacterial and archaeal small-subunit rRNA genes were amplified and sequenced from blow samples, including many of sparse volume, as well as seawater and other controls, to characterize the associated microbial community. The blow microbiomes were distinct from the seawater microbiomes and included 25 phylogenetically diverse bacteria common to all sampled whales. This core assemblage comprised on average 36% of the microbiome, making it one of the more consistent animal microbiomes studied to date. The closest phylogenetic relatives of 20 of these core microbes were previously detected in marine mammals, suggesting that this core microbiome assemblage is specialized for marine mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screening was conducted on the microbiomes at the genus level, which showed that all blow and few seawater microbiomes contained relatives of bacterial pathogens; no known cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a shared large core microbiome in humpback whales is an important advancement for health and disease monitoring of this species and of other large whales.Funding for sample analysis was provided through a grant to A.A., M.J.M., and J.W.D. from the Ocean Life Institute of the Woods Hole Oceanographic Institution. Attachments for collection surfaces on the hexacopter were constructed with funding support from NOAA’s UAS Program

    Local delivery of tacrolimus using electrospun poly-ε-caprolactone nanofibres suppresses the T-cell response to peripheral nerve allografts

    Get PDF
    OBJECTIVE: Repair of nerve gap injuries can be achieved through nerve autografting, but this approach is restricted by limited tissue supply and donor site morbidity. The use of living nerve allografts would provide an abundant tissue source, improving outcomes following peripheral nerve injury. Currently this approach is not used due to the requirement for systemic immunosuppression, to prevent donor-derived cells within the transplanted nerve causing an immune response, which is associated with severe adverse effects. The aim of this study was to develop a method for delivering immunosuppression locally, then to test its effectiveness in reducing the immune response to transplanted tissue in a rat model of nerve allograft repair. APPROACH: A coaxial electrospinning approach was used to produce poly-ε-caprolactone fibre sheets loaded with the immunosuppressant tacrolimus. The material was characterised in terms of structure and tacrolimus release, then tested in vivo through implantation in a rat sciatic nerve allograft model with immunologically mismatched host and donor tissue. MAIN RESULTS: Following successful drug encapsulation, the fibre sheets showed nanofibrous structure and controlled release of tacrolimus over several weeks. Materials containing tacrolimus (and blank material controls) were implanted around the nerve graft at the time of allograft or autograft repair. The fibre sheets were well tolerated by the animals and tacrolimus release resulted in a significant reduction in lymphocyte infiltration at three weeks post-transplantation. SIGNIFICANCE: These findings demonstrate proof of concept for a novel nanofibrous biomaterial-based targeted drug delivery strategy for immunosuppression in peripheral nerve allografting

    A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies

    Get PDF
    PURPOSE: This multicenter, open-label, dose-escalating, phase I study evaluated the safety, tolerability, pharmacokinetics and preliminary tumor response of a nanoparticulate formulation of paclitaxel (Nanotax®) administered intraperitoneally for multiple treatment cycles in patients with solid tumors predominantly confined to the peritoneal cavity for whom no other curative systemic therapy treatment options were available. METHODS: Twenty-one patients with peritoneal malignancies received Nanotax® in a modified dose-escalation approach utilizing an accelerated titration method. All patients enrolled had previously received chemotherapeutics and undergone surgical procedures, including 33 % with optimal debulking. Six doses (50–275 mg/m2) of Cremophor-free Nanotax® were administered intraperitoneally for one to six cycles (every 28 days). RESULTS: Intraperitoneal (IP) administration of Nanotax® did not lead to increases in toxicity over that typically associated with intravenous (IV) paclitaxel. No patient reported ≥Grade 2 neutropenia and/or ≥Grade 3 neurologic toxicities. Grade 3 thrombocytopenia unlikely related to study medication occurred in one patient. The peritoneal concentration–time profile of paclitaxel rose during the 2 days after dosing to peritoneal fluid concentrations 450–2900 times greater than peak plasma drug concentrations and remained elevated through the entire dose cycle. Best response assessments were made in 16/21 patients: Four patients were assessed as stable or had no response and twelve patients had increasing disease. Five of 21 patients with advanced cancers survived longer than 400 days after initiation of Nanotax® IP treatment. CONCLUSIONS: Compared to IV paclitaxel administration, Cremophor-free IP administration of Nanotax® provides higher and prolonged peritoneal paclitaxel levels with minimal systemic exposure and reduced toxicity

    Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic

    Get PDF
    Although assessments of winter carryover effects on fitness-related breeding parameters are vital for determining the links between environmental variation and fitness, direct methods of determining overwintering distributions (e.g., electronic tracking) can be expensive, limiting the number of individuals studied. Alternatively, stable isotope analysis in specific tissues can be used as an indirect means of determining individual overwintering areas of residency. Although increasingly used to infer the overwintering distributions of terrestrial birds, stable isotopes have been used less often to infer overwintering areas of marine birds. Using Arctic-breeding common eiders, we test the effectiveness of an integrated stable isotope approach (13-carbon, 15-nitrogen, and 2-hydrogen) to infer overwintering locations. Knowing the overwinter destinations of eiders from tracking studies at our study colony at East Bay Island, Nunavut, we sampled claw and blood tissues at two known overwintering locations, Nuuk, Greenland, and Newfoundland, Canada. These two locations yielded distinct tissue-specific isotopic profiles. We then compared the isotope profiles of tissues collected from eiders upon their arrival at our breeding colony, and used a k-means cluster analysis approach to match arriving eiders to an overwintering group. Samples from the claws of eiders were most effective for determining overwinter origin, due to this tissue\u27s slow growth rate relative to the 40-day turnover rate of blood. Despite taking an integrative approach using multiple isotopes, k-means cluster analysis was most effective when using 13-carbon alone to assign eiders to an overwintering group. Our research demonstrates that it is possible to use stable isotope analysis to assign an overwintering location to a marine bird. There are few examples of the effective use of this technique on a marine bird at this scale; we provide a framework for applying this technique to detect changes in the migration phenology of birds\u27 responses to rapid changes in the Arctic

    Gene expression signature of atypical breast hyperplasia and regulation by SFRP1

    Get PDF
    BACKGROUND: Atypical breast hyperplasias (AH) have a 10-year risk of progression to invasive cancer estimated at 4-7%, with the overall risk of developing breast cancer increased by ~ 4-fold. AH lesions are estrogen receptor alpha positive (ERalpha+) and represent risk indicators and/or precursor lesions to low grade ERalpha+ tumors. Therefore, molecular profiles of AH lesions offer insights into the earliest changes in the breast epithelium, rendering it susceptible to oncogenic transformation. METHODS: In this study, women were selected who were diagnosed with ductal or lobular AH, but no breast cancer prior to or within the 2-year follow-up. Paired AH and histologically normal benign (HNB) tissues from patients were microdissected. RNA was isolated, amplified linearly, labeled, and hybridized to whole transcriptome microarrays to determine gene expression profiles. Genes that were differentially expressed between AH and HNB were identified using a paired analysis. Gene expression signatures distinguishing AH and HNB were defined using AGNES and PAM methods. Regulation of gene networks was investigated using breast epithelial cell lines, explant cultures of normal breast tissue and mouse tissues. RESULTS: A 99-gene signature discriminated the histologically normal and AH tissues in 81% of the cases. Network analysis identified coordinated alterations in signaling through ERalpha, epidermal growth factor receptors, and androgen receptor which were associated with the development of both lobular and ductal AH. Decreased expression of SFRP1 was also consistently lower in AH. Knockdown of SFRP1 in 76N-Tert cells resulted altered expression of 13 genes similarly to that observed in AH. An SFRP1-regulated network was also observed in tissues from mice lacking Sfrp1. Re-expression of SFRP1 in MCF7 cells provided further support for the SFRP1-regulated network. Treatment of breast explant cultures with rSFRP1 dampened estrogen-induced progesterone receptor levels. CONCLUSIONS: The alterations in gene expression were observed in both ductal and lobular AH suggesting shared underlying mechanisms predisposing to AH. Loss of SFRP1 expression is a significant regulator of AH transcriptional profiles driving previously unidentified changes affecting responses to estrogen and possibly other pathways. The gene signature and pathways provide insights into alterations contributing to AH breast lesions

    Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma

    Get PDF
    High-grade epithelial ovarian carcinomas (OC) containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pre-treatment and post-progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase 2 study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed OC. In six of 12 pre-treatment biopsies, a truncation mutation in BRCA1, RAD51C or RAD51D was identified. In five of six paired post-progression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft (PDX), as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations
    corecore