115 research outputs found
Recommended from our members
Magnetic characterization of perpendicular recording media
In this paper, we describe techniques for the magnetic characterization of perpendicular recording media. Such measurements made using traditional techniques, such as the vibrating sample magnetometry (VSM) and alternating gradient force magnetometer (AGFM), have to be corrected for the sample shape demagnetizing factor, which is often found not to be equal to -4p. For measurements other than the simple hysteresis loop, such as remanence curves, this correction must be carried out in real time and we describe the method by which this can be achieved and the process for achieving the correct demagnetization of perpendicular films prior to measurements of the isothermal remanent magnetization curve. A further complication is that real perpendicular media have a soft underlayer beneath the recording layer, which swamps and confuses signals from instruments such as VSM or AGFM. Hence, we describe the construction and use of a magnetooptical Kerr effect magnetometer, which does not penetrate significantly into the soft layer and enables the perpendicular layer to be measured independently. We describe the properties of a traditional alloy perpendicular medium and a Co-Pd multilayer system, which in the latter case exhibits multiple switching behavior. We also address the issue of the effect of the soft underlayer on the coupling in similar longitudinal films and find that the presence of the underlayer induces significant additional coupling effects that may well give rise to an increase in noise in recorded signal
Comparative anatomy of the thigh nerves of Cebus libidinosus (Rylands et al., 2000)
Non-human primates have constituted an important group among animals subjected to various studies. Ethological, evolutionary and paleontological studies have revealed changes in anatomical structures linked to the evolution of primates, considered in studies on the comparative anatomy between Cebus libidinosus and other neotropical monkeys or those from the Old World, and the detailed knowledge on their anatomy may represent an important factor for their preservation and protection when the animals are brought to veterinary clinics after accidents or illnesses. In terms of veterinary importance, sometimes these animals arrive in the veterinary medical clinics after accidents, needing surgery or clinical treatment, but the little data available on anatomy has impaired the correct proceedings. The main justification for studies on C. libidinosus, is due to little information about the anatomy related to C. libidinosus in Brazilian and worldwide scientific literature. In this study, the distribution, enervation and path of the femoral and sciatic nerves of the pelvic limb (thigh) of C. libidinosus were studied and these results were compared with literature on the anatomy of humans, chimpanzees and baboons. In general, the enervation model of the four primates is identical, but in specific terms, the differences in enervations indicate evolution convergence closer to the branch of baboons in the evolutionary tree, and these data corroborate other comparative studies in relation to the same primates to vessels, muscles and nerves. In conclusion, the nerve organization in the thigh of C. libidinosus is identical to baboon, chimpanzee and homo, but more similar to baboon. The specific differences found indicate an ancient phylogenic origin to C. libidinosus and baboons (data corroborated by other studies)
Analysis procedure for americium in environmental samples
Several methods for the analysis of /sup 241/Am in environmental samples were evaluated and a preferred method was selected. This method was modified and used to determine the /sup 241/Am content in sediments, biota, and water. The advantages and limitations of the method are discussed. The method is also suitable for /sup 244/Cm analysis
Recommended from our members
An integrated assessment of carbon dioxide capture and storage in the UK
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in
our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term
Evaluation of it GW approximations for the self-energy of a Hubbard cluster
We evaluate several approximations for the self-energy operator and dielectric function of systems of interacting electrons using a two-dimensional Hubbard cluster for which the self-energy, dielectric function, and one-particle Green's function may be calculated exactly. The results show the GW approximation (in the form in which it is commonly used in ab initio calculations for real materials) to be relatively successful in establishing the main features of the spectrum, even when the electron-electron interaction is not weak. It is also clear that improving the G andW used in this approximation without including vertex corrections in the self-energy does not lead to major improvements
Long life in the modern world Changes in the process of ageing
SIGLEAvailable from British Library Document Supply Centre-DSC:4274.26032(no 4) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …