468 research outputs found

    Extending the Ehresmann-Schein-Nambooripad Theorem

    Full text link
    We extend the `join-premorphisms' part of the Ehresmann-Schein-Nambooripad Theorem to the case of two-sided restriction semigroups and inductive categories, following on from a result of Lawson (1991) for the `morphisms' part. However, it is so-called `meet-premorphisms' which have proved useful in recent years in the study of partial actions. We therefore obtain an Ehresmann-Schein-Nambooripad-type theorem for meet-premorphisms in the case of two-sided restriction semigroups and inductive categories. As a corollary, we obtain such a theorem in the inverse case.Comment: 23 pages; final section on Szendrei expansions removed; further reordering of materia

    Workplace violence in Queensland, Australia: the results of a comparative study

    Get PDF
    [Abstract]: This paper presents the results on workplace violence from a larger study undertaken in 2004. Comparison is made with the results of a similar study undertaken in 2001. The study involved the random sampling of 3000 nurses from the Queensland Nurses’ Union’s membership in the public (acute hospital and community nursing), private (acute hospital and domiciliary nursing) and aged care sectors (both public and private aged care facilities). The self-reported results suggest an increase in workplace violence in all three sectors. Whilst there are differences in the sources of workplace violence across the sectors, the major causes of workplace violence are: clients/patients, visitors/relatives, other nurses, nursing management and medical practitioners. Associations were also found between workplace violence and gender, the designation of the nurse, hours of employment, the age of the nurse, morale and perceptions of workplace safety. Whilst the majority of nurses reported that policies were in place for the management of workplace violence, these policies were not always adequate

    The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia

    Full text link
    Warm-core eddies (WCEs) formed from the East Australian Current (EAC) play an important role in the heat, mass and biogeochemical budgets of the western Tasman Sea. The development and separation of an EAC WCE during July-December 2008 was observed using remotely sensed temperature, ocean colour and sea-level elevation, three Argo floats, a shipboard CTD, a shelf mooring array and a 15-day deployment of a Slocum glider. The eddy formed from an EAC meander during the first half of 2008 and in late August had a ~275m deep surface mixed layer. In the two months before separation in early December, fresher and warmer EAC water flooded the top of the eddy, submerging the winter mixed layer. The rate of vertical transport due to submergence was estimated to be between 1 and 6Sv, at the time accounting for a significant fraction of the mean southward flow of the EAC. The core of the eddy had a surface chlorophyll a concentration of <0.4mgm-3 throughout the observations. A 20-40m thick pycnocline formed at the interface of the flooding surface waters and the submerged layer. Chlorophyll a concentration in the pycnocline ranged from 0.5 to 2mgm-3, with depth-integrated concentration ranging between 25 and 75mgm-2. The development of a sub-surface maximum suggests that flooding increased light levels in the pycnocline. Elevated levels of coloured dissolved organic matter in the submerged layer correspond to oxygen depletion, suggesting respiration of organic matter. A comparison is made with observations from WCEs in 1978 and 1997 in which, unusually, surface flooding did not occur, but solar heating stratified the top 50m. In the two eddies with surface capping, surface chlorophyll a concentrations were an order of magnitude higher than the 2008 flooded eddy, but depth-integrated chlorophyll a was similar. These findings suggest that EAC WCEs with relatively shallow surface flooding contain more phytoplankton biomass than surface images would suggest, with the vertical position of the chlorophyll a maximum depending on whether, and to what depth, the winter surface mixed layer is submerged. © 2010 Elsevier Ltd

    Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

    Get PDF
    In the past decade, significant research efforts have been devoted to mineral chemistrystudies to assist porphyry exploration. These activities can be divided into two majorfields of research: (1) porphyry indicator minerals (PIMs), which are used to identify thepresence of, or potential for, porphyry-style mineralization based on the chemistry ofmagmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermalminerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs),which use the chemical compositions of hydrothermal minerals such as epidote,chlorite and alunite to predict the likely direction and distance to mineralized centers,and the potential metal endowment of a mineral district. This new generation ofexploration tools has been enabled by advances in and increased access to laserablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), short wavelength infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies.PIMs and PVFTs show considerable promise for exploration and are starting to beapplied to the diversity of environments that host porphyry and epithermal depositsglobally. Industry has consistently supported development of these tools, in the case ofPVFTs encouraged by several successful blind tests where deposit centers havesuccessfully been predicted from distal propylitic settings. Industry adoption is steadilyincreasing but is restrained by a lack of the necessary analytical equipment andexpertise in commercial laboratories, and also by the on-going reliance on well-established geochemical exploration techniques (e.g., sediment, soil and rock-chipsampling) that have aided the discovery of near-surface resources over many decades, are now proving less effective in the search for deeply buried mineral resources, and for those concealed under cover

    Porphyry Indicator Minerals (PIMS) and Porphyry Vectoring and Fertility Tools (PVFTS) – Indicators of Mineralization Styles and Recorders of Hypogene Geochemical Dispersion Halos

    Get PDF
    In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMS), which aims to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as plagioclase, zircon and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTS), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in laser ablation-inductively coupled plasma mass spectrometry, short wave length infrared data acquisition and data processing, and the increased availability of microanalytical techniques such as cathodoluminescence. PVFTS and PIMS show considerable promise for porphyry exploration, and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits around the circum-Pacific region. Industry has consistently supported development of these tools, in the case of PVFTS encouraged by several successful “blind tests” where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories.Item freely available with no apparent Creative Commons License or copyright statement. The attached file is the published pdf

    The Historical Context of the Gender Gap in Mathematics

    Get PDF
    This chapter is based on the talk that I gave in August 2018 at the ICM in Rio de Janeiro at the panel on "The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective". It provides some examples of the challenges and prejudices faced by women mathematicians during last two hundred and fifty years. I make no claim for completeness but hope that the examples will help to shed light on some of the problems many women mathematicians still face today

    Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort

    Get PDF
    OBJECTIVE: To evaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score ≄2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. METHODS: Individuals with AF and CHA2DS2-VASc score ≄2 on 1 January 2020 were identified using electronic health records for 56 million people in England and were followed up until 1 May 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19-related hospitalisation and death were analysed using logistic and Cox regression in individuals with pre-existing AT use versus no AT use, anticoagulants (AC) versus antiplatelets (AP), and direct oral anticoagulants (DOACs) versus warfarin. RESULTS: From 972 971 individuals with AF (age 79 (±9.3), female 46.2%) and CHA2DS2-VASc score ≄2, 88.0% (n=856 336) had pre-existing AT use, 3.8% (n=37 418) had a COVID-19 hospitalisation and 2.2% (n=21 116) died, followed up to 1 May 2021. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92, 95% CI 0.87 to 0.96), but higher odds of hospitalisation (OR=1.20, 95% CI 1.15 to 1.26). AC versus AP was associated with lower odds of death (OR=0.93, 95% CI 0.87 to 0.98) and higher hospitalisation (OR=1.17, 95% CI 1.11 to 1.24). For DOACs versus warfarin, lower odds were observed for hospitalisation (OR=0.86, 95% CI 0.82 to 0.89) but not for death (OR=1.00, 95% CI 0.95 to 1.05). CONCLUSIONS: Pre-existing AT use may be associated with lower odds of COVID-19 death and, while not evidence of causality, provides further incentive to improve AT coverage for eligible individuals with AF

    Using mineral chemistry to aid exploration: a case study from the resolution porphyry Cu-Mo deposit, Arizona

    Get PDF
    The giant, high-grade Resolution porphyry Cu-Mo deposit in the Superior district of Arizona is hosted in Proterozoic and Paleozoic basement and in an overlying Cretaceous volcaniclastic breccia and sandstone package. Resolution has a central domain of potassic alteration that extends more than 1 km outboard of the ore zone, overlapping with a propylitic halo characterized by epidote, chlorite, and pyrite that is particularly well developed in the Laramide volcaniclastic rocks and Proterozoic dolerite sills. The potassic and propylitic assemblages were overprinted in the upper parts of the deposit by intense phyllic and advanced argillic alteration. The district was disrupted by Tertiary Basin and Range extension, and the fault block containing Resolution and its Cretaceous host succession was buried under thick mid-Miocene dacitic volcanic cover, obscuring the geologic, geophysical, and geochemical footprint of the deposit. To test the potential of propylitic mineral chemistry analyses to aid in the detection of concealed porphyry deposits, a blind test was conducted using a suite of epidote-chlorite ± pyrite-altered Laramide volcaniclastic rocks and Proterozoic dolerites collected from the propylitic halo, with samples taken from two domains located to the north and south and above the Resolution ore zone. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data of epidote provided indications of deposit fertility and proximity. Competition for chalcophile elements (As, Sb, Pb) between coexisting pyrite and epidote grains led to a subdued As-Sb fertility response in epidote, consistent with epidote collected between 0.7 and 1.5 km from the center of a large porphyry deposit. Temperature-sensitive trace elements in chlorite provided coherent spatial zonation patterns, implying a heat source centered at depth between the two sample clusters, and application of chlorite proximitor calculations based on LA-ICP-MS analyses provided a precisely defined drill target in this location in three dimensions. Drilling of this target would have resulted in the discovery of Resolution, confirming that epidote and chlorite mineral chemistry can potentially add value to porphyry exploration under cover
    • 

    corecore