295 research outputs found

    Geology and genesis of the cerro la mina porphyry-high sulfidation Au (Cu-Mo) prospect, Mexico

    Get PDF
    The Cerro la Mina Au (Cu-Mo) porphyry-high sulfidation prospect is located in Chiapas State, southeastern Mexico, outside of the major metallogenic provinces of Mexico. The prospect is hosted by Pleistocene alkaline volcanic rocks of the Chiapanecan volcanic arc that formed in a complex triple-junction tectonic setting. Cerro la Mina's stratigraphy comprises pyroclastic flows that were intruded by monzodiorites and diorites at 1.04 ± 0.04 Ma (U-Pb, zircon), and that were overlain by debris flows and synvolcanic trachyandesite domes. The volcanic stratigraphy of Cerro la Mina is dominated by pyroclastic flows and rare basalts that are cut by the Cerro la Mina breccia pipe, a matrix-rich granular, vertically oriented, downward-Tapering, polymict lithic rock unit that is host to all of the significant alteration and mineralization. A NW-Trending sinistral wrench fault, which was active throughout the history of Cerro la Mina, is responsible for dismembering the prospect after mineralization. The magmatic hydrothermal system was composed of early porphyry-style potassic veins (quartz + K-feldspar ± biotite) and stage 1 pyrite that are preserved in clasts within the breccia pipe, suggesting that brecciation disrupted an embryonic porphyry system. Late potassic alteration occurred after the formation of the breccia pipe, as its matrix is strongly K-feldspar altered. Hydrothermal fluids then produced phyllic alteration composed of quartz, muscovite, illite, illite-smectite, and chlorite that is associated with stage 2 pyrite ± chalcopyrite ± molybdenite ± quartz veins. An unusual zoned pattern of advanced argillic-Argillic alteration overprinted potassic and phyllic alteration. This zoning included a low-Temperature (<110°C) halloysite + kaolinite that extends from 800 to 250 m below present-day surface and is deeper than higher temperature (>120°C) quartz + dickite ± kaolinite ± pyrophyllite ± alunite that occurs from 250 m to the present-day surface. The advanced argillic-Argillic altered rocks host the most significant Au-Cu mineralization, which is associated with stage 3 marcasite, sphalerite, galena, and barite, and stage 4 arsenian pyrite ± enargite ± covellite. The magmatic hydrothermal system at Cerro la Mina began sometime between monzodiorite emplacement (1.04 ± 0.04 Ma; zircon U-Pb) and the precipitation of porphyry stage 2 molybdenite at 780 ± 10 ka (Re-Os). 40Ar/39Ar dating of biotite (689 ± 13 ka) records the age at which the hydrothermal system cooled below the biotite closure temperature of 300°C and provides a maximum estimate for the onset of advanced argillicargillic alteration. Sulfur isotope results of sulfides (-2.5 to +4.9‰; mean +0.7‰; n = 20) and a sulfate (barite; +10.5‰; n = 1) suggest a magmatic source of sulfur for all four stages of mineralization. The lack of residual quartz, rare alunite, and anomalous halloysite-kaolinite alteration may be explained by the high acid-buffering capacity of alkaline volcanic host rocks, high CO2 contents of the alkaline magma, and/or potentially by a highly reduced magmatic hydrothermal fluid. At the regional metallogenic scale, the Cerro la Mina prospect along with the nearby Santa Fé mine and Campamento deposit represent parts of a porphyry copper system-specifically, a porphyry/high-sulfidation, proximal skarn and intermediate sulfidation deposit, respectively. The characteristics of Cerro la Mina (i.e., anomalous halloysite-kaolinite alteration) broaden the window for additional discoveries to be made in the porphyry-epithermal environment

    Workplace violence in Queensland, Australia: the results of a comparative study

    Get PDF
    [Abstract]: This paper presents the results on workplace violence from a larger study undertaken in 2004. Comparison is made with the results of a similar study undertaken in 2001. The study involved the random sampling of 3000 nurses from the Queensland Nurses’ Union’s membership in the public (acute hospital and community nursing), private (acute hospital and domiciliary nursing) and aged care sectors (both public and private aged care facilities). The self-reported results suggest an increase in workplace violence in all three sectors. Whilst there are differences in the sources of workplace violence across the sectors, the major causes of workplace violence are: clients/patients, visitors/relatives, other nurses, nursing management and medical practitioners. Associations were also found between workplace violence and gender, the designation of the nurse, hours of employment, the age of the nurse, morale and perceptions of workplace safety. Whilst the majority of nurses reported that policies were in place for the management of workplace violence, these policies were not always adequate

    Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

    Get PDF
    In the past decade, significant research efforts have been devoted to mineral chemistrystudies to assist porphyry exploration. These activities can be divided into two majorfields of research: (1) porphyry indicator minerals (PIMs), which are used to identify thepresence of, or potential for, porphyry-style mineralization based on the chemistry ofmagmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermalminerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs),which use the chemical compositions of hydrothermal minerals such as epidote,chlorite and alunite to predict the likely direction and distance to mineralized centers,and the potential metal endowment of a mineral district. This new generation ofexploration tools has been enabled by advances in and increased access to laserablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), short wavelength infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies.PIMs and PVFTs show considerable promise for exploration and are starting to beapplied to the diversity of environments that host porphyry and epithermal depositsglobally. Industry has consistently supported development of these tools, in the case ofPVFTs encouraged by several successful blind tests where deposit centers havesuccessfully been predicted from distal propylitic settings. Industry adoption is steadilyincreasing but is restrained by a lack of the necessary analytical equipment andexpertise in commercial laboratories, and also by the on-going reliance on well-established geochemical exploration techniques (e.g., sediment, soil and rock-chipsampling) that have aided the discovery of near-surface resources over many decades, are now proving less effective in the search for deeply buried mineral resources, and for those concealed under cover

    Porphyry Indicator Minerals (PIMS) and Porphyry Vectoring and Fertility Tools (PVFTS) – Indicators of Mineralization Styles and Recorders of Hypogene Geochemical Dispersion Halos

    Get PDF
    In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMS), which aims to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as plagioclase, zircon and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTS), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in laser ablation-inductively coupled plasma mass spectrometry, short wave length infrared data acquisition and data processing, and the increased availability of microanalytical techniques such as cathodoluminescence. PVFTS and PIMS show considerable promise for porphyry exploration, and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits around the circum-Pacific region. Industry has consistently supported development of these tools, in the case of PVFTS encouraged by several successful “blind tests” where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories.Item freely available with no apparent Creative Commons License or copyright statement. The attached file is the published pdf

    Multi-stage arc magma evolution recorded by apatite in volcanic rocks

    Get PDF
    Gold open access fee paid by NHMProtracted magma storage in the deep crust is a key stage in the formation of evolved, hydrous arc magmas that can result in explosive volcanism and the formation of economically valuable magmatic-hydrothermal ore deposits. High magmatic water content in the deep crust results in extensive amphibole ± garnet fractionation and the suppression of plagioclase crystallization as recorded by elevated Sr/Y ratios and high Eu (high Eu/Eu*) in the melt. Here, we use a novel approach to track the petrogenesis of arc magmas using apatite trace element chemistry in volcanic formations from the Cenozoic arc of central Chile. These rocks formed in a magmatic cycle that culminated in high-Sr/Y magmatism and porphyry ore deposit formation in the Miocene. We use Sr/Y, Eu/Eu*, and Mg in apatite to track discrete stages of arc magma evolution. We apply fractional crystallization modeling to show that early-crystallizing apatite can inherit a high-Sr/Y and high-Eu/Eu* melt chemistry signature that is predetermined by amphibole-dominated fractional crystallization in the lower crust. Our modeling shows that crystallization of the in situ host-rock mineral assemblage in the shallow crust causes competition for trace elements in the melt that leads to apatite compositions diverging from bulk-magma chemistry. Understanding this decoupling behavior is important for the use of apatite as an indicator of metallogenic fertility in arcs and for interpretation of provenance in detrital studies.© 2020 The Authors Gold Open Access: This paper is published under the terms of the CC-BY license (https://creativecommons.org/licenses/by/4.0/). The attached file is the published pdf

    Behavioural responses to SARS-CoV-2 antibody testing in England: REACT-2 study

    Get PDF
    Background: This study assesses the behavioural responses to SARS-CoV-2 antibody test results as part of the REal-time Assessment of Community Transmission-2 (REACT-2) research programme, a large community-based surveillance study of antibody prevalence in England. Methods: A follow-up survey was conducted six weeks after the SARS-CoV-2 antibody test. The follow-up survey included 4500 people with a positive result and 4039 with a negative result. Reported changes in behaviour were assessed using difference-in-differences models. A nested interview study was conducted with 40 people to explore how they thought through their behavioural decisions. Results: While respondents reduced their protective behaviours over the six weeks, we did not find evidence that positive test results changed participant behaviour trajectories in relation to the number of contacts the respondents had, for leaving the house to go to work, or for leaving the house to socialise in a personal place. The qualitative findings supported these results. Most people did not think that they had changed their behaviours because of their test results, however they did allude to some changes in their attitudes and perceptions around risk, susceptibility, and potential severity of symptoms. Conclusions: We found limited evidence that knowing your antibody status leads to behaviour change in the context of a research study. While this finding should not be generalised to widespread self-testing in other contexts, it is reassuring given the importance of large prevalence studies, and the practicalities of doing these at scale using self-testing with lateral flow immunoassay (LFIA)

    Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools

    Get PDF
    Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You can freely download the publication in its entirety by visiting the publisher's website

    The Historical Context of the Gender Gap in Mathematics

    Get PDF
    This chapter is based on the talk that I gave in August 2018 at the ICM in Rio de Janeiro at the panel on "The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective". It provides some examples of the challenges and prejudices faced by women mathematicians during last two hundred and fifty years. I make no claim for completeness but hope that the examples will help to shed light on some of the problems many women mathematicians still face today

    Using mineral chemistry to aid exploration: a case study from the resolution porphyry Cu-Mo deposit, Arizona

    Get PDF
    The giant, high-grade Resolution porphyry Cu-Mo deposit in the Superior district of Arizona is hosted in Proterozoic and Paleozoic basement and in an overlying Cretaceous volcaniclastic breccia and sandstone package. Resolution has a central domain of potassic alteration that extends more than 1 km outboard of the ore zone, overlapping with a propylitic halo characterized by epidote, chlorite, and pyrite that is particularly well developed in the Laramide volcaniclastic rocks and Proterozoic dolerite sills. The potassic and propylitic assemblages were overprinted in the upper parts of the deposit by intense phyllic and advanced argillic alteration. The district was disrupted by Tertiary Basin and Range extension, and the fault block containing Resolution and its Cretaceous host succession was buried under thick mid-Miocene dacitic volcanic cover, obscuring the geologic, geophysical, and geochemical footprint of the deposit. To test the potential of propylitic mineral chemistry analyses to aid in the detection of concealed porphyry deposits, a blind test was conducted using a suite of epidote-chlorite ± pyrite-altered Laramide volcaniclastic rocks and Proterozoic dolerites collected from the propylitic halo, with samples taken from two domains located to the north and south and above the Resolution ore zone. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data of epidote provided indications of deposit fertility and proximity. Competition for chalcophile elements (As, Sb, Pb) between coexisting pyrite and epidote grains led to a subdued As-Sb fertility response in epidote, consistent with epidote collected between 0.7 and 1.5 km from the center of a large porphyry deposit. Temperature-sensitive trace elements in chlorite provided coherent spatial zonation patterns, implying a heat source centered at depth between the two sample clusters, and application of chlorite proximitor calculations based on LA-ICP-MS analyses provided a precisely defined drill target in this location in three dimensions. Drilling of this target would have resulted in the discovery of Resolution, confirming that epidote and chlorite mineral chemistry can potentially add value to porphyry exploration under cover
    • …
    corecore