1,205 research outputs found

    Intravital Microscopic Evidence that Polylactide-Polyglycolide (PLGA) Delays Neo-Osteogenesis and Neo-Angiogenesis in Healing Bone

    Get PDF
    The bone chamber implant (BCI) has allowed monitoring a healing bone defect as well as the effect of an eroding implant on the healing process. The BCI is a useful tool and intravital microscopy a valuable technique for obtaining quantitative data chronicling osseous wound healing. The physiological parameters that form the initial data base documenting healing are neo-osteogenesis and neo-angiogenesis. This review compares and characterizes osseous wound healing in a BCI loaded with an erodible copolymer, PLGA (polylactide-polyglycolide). To determine if a statistically significant deviation from normal healing had occurred, the results were compared with present and historical controls. In the BCI PLGA erosion was accompanied by a delay in the onset of neo-osteogenesis, as measured by trabecular apposition. Concurrently, neo-angiogenesis was both detained and retarded. The neo-angiogenesis delay was interpreted as a direct consequence of the neo-osteogenesis delay since the major part of the vasculature was carried by the apposing trabeculae. Angiogenesis inhibition is more difficult to interpret until data are further analyzed to determine if apposing trabeculae in the presence of eroding PLGA carry less vasculature

    Characteristics of Magnetoplasmas Semiannual Status Report No. 12, May 1 - Oct. 31, 1965

    Get PDF
    Magnetoplasma characteristics - anomalous diffusion across magnetic field, heat conduction in plasma, cesium plasma generator, and electron velocity distribution function in magnetoplasma

    Search and Pursuit-Evasion in Mobile Robotics, A survey

    Get PDF
    This paper surveys recent results in pursuitevasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work

    Influence of the Soret effect on convection of binary fluids

    Full text link
    Convection in horizontal layers of binary fluids heated from below and in particular the influence of the Soret effect on the bifurcation properties of extended stationary and traveling patterns that occur for negative Soret coupling is investigated theoretically. The fixed points corresponding to these two convection structures are determined for realistic boundary conditions with a many mode Galerkin scheme for temperature and concentration and an accurate one mode truncation of the velocity field. This solution procedure yields the stable and unstable solutions for all stationary and traveling patterns so that complete phase diagrams for the different convection types in typical binary liquid mixtures can easily be computed. Also the transition from weakly to strongly nonlinear states can be analyzed in detail. An investigation of the concentration current and of the relevance of its constituents shows the way for a simplification of the mode representation of temperature and concentration field as well as for an analytically manageable few mode description.Comment: 30 pages, 12 figure

    The 90 GHz radiometric imaging

    Get PDF
    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system

    Operation of rain gauge and ground-water monitoring networks for the Imperial Valley Water Authority, year six: September 1997 - August 1998

    Get PDF
    The Illinois State Water Survey (ISWS), under contract to the Imperial Valley Water Authority (IVWA), has operated a network of rain gauges in Mason and Tazewell Counties since August 1992. The ISWS also established a network of ground-water observation wells in the Mason-Tazewell area. The networks are located in the most heavily irrigated region of the state. Ground water in various aquifers are the major source of the irrigation and domestic water supplies in the region. Recent extreme weather events (e.g., the drought of 1988 and the great flood of 1993) resulted in large fluctuations of the ground-water levels in the Imperial Valley area. The purpose of the rain gauge network and the ground-water observation well network is to collect a long-term series of data to determine the rate of ground-water drawdown in dry periods and during the growing season, and the rate at which the aquifers recharge. Precipitation is recorded for each storm that traverses the Imperial Valley, and ground-water levels at the 13 observation wells are measured the first of each month. The database from these networks consists of 6 years of precipitation data and 4 years of ground-water observations. At the beginning of the ground-water observations in 1995, the water levels were at the highest in the four years of observation. These high ground-water levels were the result of the very wet 1992-1995 period when annual precipitation was above the 30-year normals at both Havana and Mason City. From September 1995-August 1997 precipitation in the region was below the 30-year normal. The 1997-1998 observation year had rainfall above the 30-year normal. Ground-water levels in the observation wells mirrored these rainfall patterns, showing a general downward trend during the dry years and a recovery in the wet 1997-1998 year. Seasonal increases in the ground-water levels were observed at most wells during the late spring and early summer, followed by decreases in August-November ground water levels. Analysis indicates that the ground-water levels are affected by both the precipitation in the Imperial Valley area and the Illinois River stages. The observation wells closest to the Illinois River show an increase in water levels whenever the river stage is high. Generally, the water levels in the wells correlate best with precipitation and Illinois River stages one to two months before the water levels are measured, i.e., the June ground-water levels are most highly correlated with the Illinois River stage or precipitation that occurs in either April or May. The analyses conducted indicate the need for continued operation of both networks due to inconsistencies associated with ground-water levels, precipitation, and the Illinois River stage. For instance, the Mason-Tazwell observation well number 2 (MTOW-2) is located near the center of Mason County well away from the Illinois River, but it has an equal correlation with the Illinois River stage and the precipitation in the area. Additional analysis needs to be undertaken to explain this unusual finding

    High current proton beam operation at GSI UNILAC

    Get PDF

    Direct Observation of Site-specific Valence Electronic Structure at Interface: SiO2/Si Interface

    Full text link
    Atom specific valence electronic structures at interface are elucidated successfully using soft x-ray absorption and emission spectroscopy. In order to demonstrate the versatility of this method, we investigated SiO2/Si interface as a prototype and directly observed valence electronic states projected at the particular atoms of the SiO2/Si interface; local electronic structure strongly depends on the chemical states of each atom. In addition we compared the experimental results with first-principle calculations, which quantitatively revealed the interfacial properties in atomic-scale.Comment: 4 pages, 3 figure

    Recombinant Human Bone Morphogenetic Protein-2 and Collagen for Bone Regeneration

    Full text link
    The study reported describes a combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) and collagen (C) to regenerate bone. Unilateral critical-sized defects (CSDs) were prepared in radii of 32 skeletally mature New Zealand white rabbits. Rabbits were divided evenly among four treatments: autograft, absorbable C (Helistatt), 35 mg of rhBMP-2 combined with absorbable C (rhBMP-2/C), and untreated CSDs. The two euthanasia periods were 4 and 8 weeks. Radiographs were taken the day of surgery, every 2 weeks, and at term and the percent of radiopacity was measured. Data analysis revealed a time-dependent increase in the percent radiopacity with rhBMP-2/C. Histological examination revealed the rhBMP-2/C treatment regenerated osseous contour by 8 weeks. According to quantitative histomorphometry, the CSD and C groups had significantly less new bone than either autograft or rhBMP-2/C (p ¡ 0.05). The results suggest that rhBMP-2/C could be an effective therapy to restore segmental bone defects
    corecore